scholarly journals Corrigendum to: Sex-specific differences in swimming, aerobic metabolism and recovery from exercise in adult coho salmon (Oncorhynchus kisutch) across ecologically relevant temperatures

2022 ◽  
Vol 10 (1) ◽  
Author(s):  
K Kraskura ◽  
E A Hardison ◽  
A G Little ◽  
T Dressler ◽  
T S Prystay ◽  
...  
2020 ◽  
Vol 9 (1) ◽  
Author(s):  
K Kraskura ◽  
E A Hardison ◽  
A G Little ◽  
T Dressler ◽  
T S Prystay ◽  
...  

Abstract Adult female Pacific salmon can have higher migration mortality rates than males, particularly at warm temperatures. However, the mechanisms underlying this phenomenon remain a mystery. Given the importance of swimming energetics on fitness, we measured critical swim speed, swimming metabolism, cost of transport, aerobic scope (absolute and factorial) and exercise recovery in adult female and male coho salmon (Oncorhynchus kisutch) held for 2 days at 3 environmentally relevant temperatures (9°C, 14°C, 18°C) in fresh water. Critical swimming performance (Ucrit) was equivalent between sexes and maximal at 14°C. Absolute aerobic scope was sex- and temperature-independent, whereas factorial aerobic scope decreased with increasing temperature in both sexes. The full cost of recovery from exhaustive exercise (excess post-exercise oxygen consumption) was higher in males compared to females. Immediately following exhaustive exercise (i.e. 1 h), recovery was impaired at 18°C for both sexes. At an intermediate time scale (i.e. 5 h), recovery in males was compromised at 14°C and 18°C compared to females. Overall, swimming, aerobic metabolism, and recovery energetics do not appear to explain the phenomenon of increased mortality rates in female coho salmon. However, our results suggest that warming temperatures compromise recovery following exhaustive exercise in both male and female salmon, which may delay migration progression and could contribute to en route mortality.


1994 ◽  
Vol 51 (10) ◽  
pp. 2188-2194 ◽  
Author(s):  
C. J. Brauner ◽  
G. K. Iwama ◽  
D. J. Randall

The critical swimming velocity (Ucrit) and haematology of wild and hatchery-reared coho salmon (Oncorhynchus kisutch) juveniles were examined in either fresh water or seawater following a 24-h seawater challenge, at the time of smoltification. In fresh water, wild smolts swam faster than hatchery-reared fish but this could largely be accounted for by scaling for body size. Transfer to seawater significantly elevated resting plasma [Na+] and reduced subsequent Ucrit in hatchery fish (by 12%) relative to that determined in fresh water but had no significant effect on resting plasma [Na+] and Ucrit in wild fish. Swimming the fish a second time in seawater after the initial 2-h exercise period resulted in a significant reduction in Ucrit relative to that in fresh water in both wild fish (16%) and hatchery fish (a further 14%); this relatively greater impairment in Ucrit in hatchery fish was due to a reduced hypo-osmoregulatory ability following seawater transfer that impairs conditions for muscle contractility and aerobic metabolism. Aerobic metabolism in seawater-exposed fish was affected in part through a reduction in haematocrit and an increase in plasma volume, reducing oxygen carrying capacity of the blood relative to conditions in fresh water.


Aquaculture ◽  
1981 ◽  
Vol 26 (1-2) ◽  
pp. 117-127 ◽  
Author(s):  
George A. Hunter ◽  
Edward M. Donaldson ◽  
Helen M. Dye

1976 ◽  
Vol 33 (12) ◽  
pp. 2699-2702 ◽  
Author(s):  
Gary A. Wedemeyer

Moving 4–5-in. coho salmon (Oncorhynchus kisutch) held in soft (20 ppm CaCO3) water from the relatively light loading density of 0.5 lb/ft3 to 1, 2, or 4 lb/ft3 (density index, DI = 0.1, 0.2, 0.4, 0.8) caused significant stress as indicated by loss of feeding behavior, but only minimal physiological disturbances, as indicated by lack of hyperglycemia or hypochloremia. However, moving them to 6 or 12 lb/ft3 (DI = 1.2, 2.4) caused significant physiological stress which required at least a week for recovery. Smolting coho salmon were physiologically stressed by population densities of 1 lb/ft3 or more and a subclinical corynebacterial kidney infection was activated. Rainbow trout (Salmo gairdneri) (4–5 in.) were physiologically stressed when moved and held at 1 lb/ft3 or more but retained normal feeding behavior. This indicates that handling and crowding stress will be minimized in softwater areas if densities in fish distribution trucks or in ponds or raceways during disease treatments are held to 0.1–0.5 lb/gal.


1994 ◽  
Vol 60 (5) ◽  
pp. 519-521 ◽  
Author(s):  
Tadashi Sakai ◽  
Hisashi Murata ◽  
Kiyoshi Yamauchi ◽  
Kiyotaka Takahashi ◽  
Nobuaki Okamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document