Transverse tubules strike back: may the junctophilin-2 be with you

2020 ◽  
Author(s):  
Matthieu Douard ◽  
Fabien Brette
Keyword(s):  
1980 ◽  
Vol 255 (13) ◽  
pp. 6290-6298 ◽  
Author(s):  
N.R. Brandt ◽  
A.H. Caswell ◽  
J.P. Brunschwig

1970 ◽  
Vol 55 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Saul Winegrad

Radioautography has been used to localize 45Ca in isotopically labeled frog skeletal muscle fibers which had been quickly frozen during a maintained tetanus, a declining tetanus, or during the period immediately following a tetanus or a contracture. During a tetanus almost all of the myofibrillar 45Ca is localized in the region of the sarcomere occupied by the thin filaments. The amount varies with the tension being developed by the muscle. The movement of calcium within the reticulum from the tubular portion to the terminal cisternae during the posttetanic period has a half-time of about 9 sec at room temperature and a Q10 of about 1.7. Repolarization is not necessary for this movement. Evidence is given to support the notion that most calcium efflux from the cell occurs from the terminal cisternae into the transverse tubules.


2012 ◽  
Vol 102 (3) ◽  
pp. 102a
Author(s):  
Peter M. Kekenes-Huskey ◽  
Johan Hake ◽  
Yuhui Cheng ◽  
Michael Holst ◽  
Frank B. Sachse ◽  
...  

1991 ◽  
Vol 145 (1) ◽  
pp. 77-90 ◽  
Author(s):  
Bernhard E. Flucher ◽  
Mark Terasaki ◽  
Hemin Chin ◽  
Troy J. Beeler ◽  
Mathew P. Daniels

1984 ◽  
Vol 99 (3) ◽  
pp. 929-939 ◽  
Author(s):  
A H Caswell ◽  
J P Brunschwig

Treatment of both transverse tubules and terminal cisternae with a combination of Triton X-100 and hypertonic K cacodylate causes dissolution of nonjunctional proteins and selective retention of membrane fragments which are capable of junction formation. Treatment of vesicles with Triton X-100 and either KCl or K gluconate causes complete dissolution of all components. Therefore K cacodylate exerts a specific preservative action on the junctional material. The membrane fragment from treatment of transverse tubules with Triton X-100 + cacodylate contains a protein of Mr = 80,000 in SDS gel electrophoresis as the predominant protein while lipid composition is enriched in cholesterol. The membrane fragment retains in electron microscopy the trilaminar appearance of the intact vesicles. Freeze fracture of transverse tubule fragments reveals a high density of low-profile, intercalated particles, which frequently form strings or occasional small arrays. The fragments from Triton X-100 plus cacodylate treatment of terminal cisternae include the protein of Mr = 80,000 as well as the spanning protein of the triad, calsequestrin, and some minor proteins. The fragments are almost devoid of lipid and display an amorphous morphology suggesting membrane disruption. The ability of the transverse tubular fragment, which contains predominantly the Mr = 80,000 protein, to form junctions with terminal cisternae fragments suggests that it plays a role in anchoring the membrane to the junctional processes of the triad. The junctional proteins may be solubilized in a combination of nonionic detergent and hypertonic NaCl. Subsequent molecular sieve chromatography gives an enriched preparation of the spanning protein. This protein has subunits of Mr = 300,000, 270,000 and 140,000 and migrates in the gel as a protein of Mr = 1.2 X 10(6) indicating a polymeric structure.


Sign in / Sign up

Export Citation Format

Share Document