scholarly journals The Intracellular Site of Calcium Activation of Contraction in Frog Skeletal Muscle

1970 ◽  
Vol 55 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Saul Winegrad

Radioautography has been used to localize 45Ca in isotopically labeled frog skeletal muscle fibers which had been quickly frozen during a maintained tetanus, a declining tetanus, or during the period immediately following a tetanus or a contracture. During a tetanus almost all of the myofibrillar 45Ca is localized in the region of the sarcomere occupied by the thin filaments. The amount varies with the tension being developed by the muscle. The movement of calcium within the reticulum from the tubular portion to the terminal cisternae during the posttetanic period has a half-time of about 9 sec at room temperature and a Q10 of about 1.7. Repolarization is not necessary for this movement. Evidence is given to support the notion that most calcium efflux from the cell occurs from the terminal cisternae into the transverse tubules.

1975 ◽  
Vol 66 (1) ◽  
pp. 31-45 ◽  
Author(s):  
B A Mobley ◽  
B R Eisenberg

Stereological techniques of point and intersection counting were used to measure morphological parameters from light and electron micrographs of frog skeletal muscle. Results for sartorius muscle are as follows: myofibrils comprise 83% of fiber volume; their surface to volume ratio is 3.8 mum-1. Mitochondria comprise 1.6% of fiber volume. Transverse tubules comprise 0.32% of fiber volume, and their surface area per volume of fiber is 0.22 mum-1. Terminal cisternae of the sarcoplasmic reticulum comprise 4.1% of fiber volume; their surface area per volume of fiber is 0.54 mum-1. Longitudinal sarcoplasmic reticullum comprises 5.0% of fiber volume, and its surface area per volume of fiber is 1.48 mum-1. Longitudinal bridges between terminal cisternae on either side of a Z disk were observed infrequently; they make up only 0.035% of fiber volume and their surface area per volume of fiber is 0.009 mum-1. T-SR junction occurs over 67% of the surface of transverse tubules and over 27% of the surface of terminal cisternae. The surface to volume ratio of the caveolae is 48 mum-1; caveolae may increase the sarcolemmal surface area by 47%. Essentially the same results were obtained from semitendinosus fibers.


1968 ◽  
Vol 51 (1) ◽  
pp. 65-83 ◽  
Author(s):  
Saul Winegrad

Radioautographs of 45Ca-labeled frog skeletal muscles have been prepared using freeze-dry and vapor fixation techniques to avoid displacement of the isotope during the preparation of the radioautographs. 45Ca has been localized in resting muscles exposed to 45Ca Ringer's for 5 min or 5 hr and in isotopically labeled muscles recovering from tetanic stimulation at room temperature or at 4°C. In muscles soaked at rest for 5 min 45Ca was present almost exclusively in the terminal cisternae. In all other muscles there were three sites at which the isotope was concentrated: (a) the terminal cisternae, (b) the intermediate cisternae and the longitudinal tubules, and (c) the A band portion of the myofibrils. The terminal cisternae were labeled more rapidly than the myofibrils, but both exchanges were accelerated by electrical stimulation. The amount of 45Ca in the longitudinal tubules and the intermediate cisternae decreased with time after a tetanus as the amount in the terminal cisternae increased. It is proposed that electrical stimulation releases calcium from the terminal cisternae and that relaxation occurs from the binding of the released calcium by the longitudinal tubules and the intermediate cisternae. Complete recovery from mechanical activity involves the transport of this bound calcium into the reticulum and its subsequent binding by the terminal cisternae. Resting exchange of calcium occurs primarily between the terminal cisternae and the transverse tubules.


1965 ◽  
Vol 48 (3) ◽  
pp. 455-479 ◽  
Author(s):  
Saul Winegrad

Autoradiographs consisting of a 1000 A thick tissue section and a 1400 A thick emulsion film have been prepared from frog toe muscles labeled with Ca45. The muscles had been fixed with an oxalate-containing osmium solution at rest at room temperature, at rest at 4°C, during relaxation following K+ depolarization or after prolonged depolarization. From 6 to 39 per cent of K+ contracture tension was produced during fixation. The grains in the autoradiographs were always concentrated in the center 0.2 to 0.3 µ of the I band and the region of the overlapping of the thick and thin filaments. The greater the tension produced during fixation, the greater was the concentration in the A band and the smaller the concentration in the I band. Autoradiographs of two muscles fixed by freeze-substitution resembled those of muscles which produced little tension during osmium fixation. Muscles which shortened during fixation produced fewer grains. In the narrow (<2.0 µ) sarcomeres of the shortened muscles, grain density decreased with decreasing sarcomere width. A theoretical analysis of the significance of these grain distributions is proposed and discussed.


1998 ◽  
Vol 274 (6) ◽  
pp. C1608-C1615 ◽  
Author(s):  
Philip A. Wahr ◽  
J. David Johnson ◽  
Jack. A. Rall

The influences of sarcomere uniformity and Ca2+ concentration on the kinetics of relaxation were examined in skinned frog skeletal muscle fibers induced to relax by rapid sequestration of Ca2+ by the photolysis of the Ca2+ chelator, diazo-2, at 10°C. Compared with an intact fiber, diazo-2-induced relaxation exhibited a faster and shorter initial slow phase and a fast phase with a longer tail. Stabilization of the sarcomeres by repeated releases and restretches during force development increased the duration of the slow phase and slowed its kinetics. When force of contraction was decreased by lowering the Ca2+concentration, the overall kinetics of relaxation was accelerated, with the slow phase being the most sensitive to Ca2+ concentration. Twitchlike contractions were induced by photorelease of Ca2+ from a caged Ca2+ (DM-Nitrophen), with subsequent Ca2+ sequestration by intact sarcoplasmic reticulum or Ca2+ rebinding to caged Ca2+. These twitchlike responses exhibited relaxation kinetics that were about twofold slower than those observed in intact fibers. Results suggest that the slow phase of relaxation is influenced by the degree of sarcomere homogeneity and rate of Ca2+ dissociation from thin filaments. The fast phase of relaxation is in part determined by the level of Ca2+ activation.


1996 ◽  
Vol 270 (2) ◽  
pp. C411-C417 ◽  
Author(s):  
Y. Jiang ◽  
J. D. Johnson ◽  
J. A. Rall

Inhibition of sarcoplasmic reticulum (SR) Ca(2+)-adenosinetriphosphatase (ATPase) with 2,5-di-(tert-butyl)-1,4-benzohydroquinone (TBQ) in frog skeletal muscle fibers at 10 degrees C prolonged the half time of the fall of the Ca2+ transient by 62% and twitch force by 100% and increased peak force by 120% without increasing the amplitude of the Ca2+ signal. In the presence of TBQ the rate of relaxation and the rate of fall of Ca2+ became progressively slower in a series of twitches until relaxation failed. Relaxation rate decreased with a time course (approximately 2 s-1) similar to the Mg2+ off rate from purified parvalbumin (PA; 3.6 s-1). TBQ slowed the rate of fall of Ca2+ (5-fold) and force (8-fold) in a 0.3-s tetanus so that the rate of fall of Ca2+ (approximately 2.5 s-1) was similar to the Mg2+ off rate from PA. TBQ caused a near total failure of both Ca2+ sequestration and relaxation in a 1.1-s tetanus, during which PA would be saturated with Ca2+ and could not contribute to relaxation. Thus, when the SR Ca(2+)-ATPase is inhibited, Mg(2+)-PA can sequester Ca2+ and produce relaxation at a rate that is defined by the Mg2+ off rate from PA.


1980 ◽  
Vol 75 (6) ◽  
pp. 617-631 ◽  
Author(s):  
J A Rall

Effects of previous activity on the ability of frog skeletal muscle at 0 degrees C to liberate energy associated with contractile activation, i.e., activation heat (AH), have been examined. Earlier work suggests that activation heat amplitude (as measured from muscles stretched to lengths where active force development is nearly abolished) is related to the amount of Ca2+ released upon stimulation. After a twitch, greater than 2 s is required before a second stimulus (AHt) can liberate the same activation heat as a first stimulus (AH infinity), i.e., (AHt)/(AH infinity) = 1 -0.83 e-1.40t, where t is time in seconds. Caffeine introduces a time delay in the recovery of the ability to generate activation heat after a twitch. After a tetanus, the activation heat is depressed to a greater extent at any time than after a twitch. The activation heat elicited by a stimulus 1 s after a tetanus is depressed progressively with respect to tetanus duration up to 3 s. For tetani of 3, 40, and 80 s duration the postetanus activation heat is comparably depressed. The time-course of the recovery of the ability of the muscle to produce activation heat after a tetanus can be described as (AHt)/(AH infinity) = 1 -0.80 e-0.95t -0.20 e-0.02t. Greater than 90 s is required before the posttetanus activation heat is equal to the pretetanus value. The faster phase of recovery is similar to recovery after the twitch and the slower phase may be associated with the return of calcium to the terminal cisternae from uptake sites in the longitudinal sarcoplasmic reticulum.


Sign in / Sign up

Export Citation Format

Share Document