scholarly journals Construction of a microsatellite-based genetic linkage map for half-smooth tongue sole Cynoglossus semilaevis

2013 ◽  
Vol 59 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Wentao Song ◽  
Guidong Miao ◽  
Yongwei Zhao ◽  
Yuze Niu ◽  
Renyi Pang ◽  
...  

Abstract The half-smooth tongue sole Cynoglossus semilaevis is an important cultured marine fish and a promising model fish for the study of sex determination. Sex-specific genetic linkage maps of half-smooth tongue sole were developed with 567 markers (565 microsatellite markers and two SCAR markers). The parents and F1 progeny (92 individuals) were used as segregating populations. The female map was composed of 480 markers in 21 linkage groups, covering a total of 1388.1 cM, with an average interval 3.06 cM between markers. The male map consisted of 417 markers in 21 linkage groups, spanning 1480.9 cM, with an average interval of 3.75 cM. The female and male maps had 474 and 416 unique positions, respectively. The genome length of half-smooth tongue sole was estimated to be 1522.9 cM for females and 1649.1cM for males. Based on estimations of map length, the female and male maps covered 91.1% and 89.8% of the genome, respectively. Furthermore, two female-specific SCAR markers, f-382 and f-783, were mapped on LG15f (linkage group 15 in female maps). The present study presents a mid-density genetic linkage map for half-smooth tongue sole. These improved genetic linkage maps may facilitate systematic genome searches to identify quantitative trait loci (QTL), such as disease resistance, growth and sex-related traits, and are very useful for marker-assisted selection breeding programs for economically important traits in half-smooth tongue sole.

2013 ◽  
Vol 9 ◽  
pp. 17-23 ◽  
Author(s):  
Liming Jiang ◽  
Guannan Chu ◽  
Quanqi Zhang ◽  
Zhigang Wang ◽  
Xubo Wang ◽  
...  

2009 ◽  
Vol 11 (6) ◽  
pp. 699-709 ◽  
Author(s):  
Xiaolin Liao ◽  
Hong-Yu Ma ◽  
Gen-Bo Xu ◽  
Chang-Wei Shao ◽  
Yong-Sheng Tian ◽  
...  

2000 ◽  
Vol 51 (4) ◽  
pp. 415 ◽  
Author(s):  
C. J. Lambrides ◽  
R. J. Lawn ◽  
I. D. Godwin ◽  
J. Manners ◽  
B. C. Imrie

Two genetic linkage maps of mungbean derived from the cross Berken ACC 41 are reported. The F2 map constructed from 67 individuals consisted of 110 markers (52 RFLP and 56 RAPD) that grouped into 12 linkage groups. The linked markers spanned a total map distance of 758.3 cM. A recombinant inbred (RI) population derived from the 67 F2 individuals was used for the generation of an additional linkage map. The RI map, composed entirely of RAPD markers, consisted of 115 markers in 12 linkage groups. The linked markers spanned a total map distance of 691.7 cM. Using a framework set of RFLP markers, the F2 map was compared with another F2 mungbean map constructed in Minnesota. In general, the order of these markers was consistent between maps. Segregation distortion was observed for some markers. 14.5% (16/110) of mapped F2 markers and 24% (28/115) of mapped RI markers segregated with distorted ratios. Segregation distortion occurred in each successive generation after the F2 . The regions of distortion identified in the Australian maps did not coincide with regions of the Minnesota map.


Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1225-1234 ◽  
Author(s):  
Elaine C Howell ◽  
Guy C Barker ◽  
Gareth H Jones ◽  
Michael J Kearsey ◽  
Graham J King ◽  
...  

Abstract We have assigned all nine linkage groups of a Brassica oleracea genetic map to each of the nine chromosomes of the karyotype derived from mitotic metaphase spreads of the B. oleracea var. alboglabra line A12DHd using FISH. The majority of probes were BACs, with A12DHd DNA inserts, which give clear, reliable FISH signals. We have added nine markers to the existing integrated linkage map, distributed over six linkage groups. BACs were definitively assigned to linkage map positions through development of locus-specific PCR assays. Integration of the cytogenetic and genetic linkage maps was achieved with 22 probes representing 19 loci. Four chromosomes (2, 4, 7, and 9) are in the same orientation as their respective linkage groups (O4, O7, O8, and O6) whereas four chromosomes (1, 3, 5, and 8) and linkage groups (O3, O9, O2, and O1) are in the opposite orientation. The remaining chromosome (6) is probably in the opposite orientation. The cytogenetic map is an important resource for locating probes with unknown genetic map positions and is also being used to analyze the relationships between genetic and cytogenetic maps.


Horticulturae ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 25
Author(s):  
Xingbo Wu ◽  
Amanda M. Hulse-Kemp ◽  
Phillip A. Wadl ◽  
Zach Smith ◽  
Keithanne Mockaitis ◽  
...  

Hydrangea (Hydrangea macrophylla) is an important ornamental crop that has been cultivated for more than 300 years. Despite the economic importance, genetic studies for hydrangea have been limited by the lack of genetic resources. Genetic linkage maps and subsequent trait mapping are essential tools to identify and make markers available for marker-assisted breeding. A transcriptomic study was performed on two important cultivars, Veitchii and Endless Summer, to discover simple sequence repeat (SSR) markers and an F1 population based on the cross ‘Veitchii’ × ‘Endless Summer’ was established for genetic linkage map construction. Genotyping by sequencing (GBS) was performed on the mapping population along with SSR genotyping. From an analysis of 42,682 putative transcripts, 8780 SSRs were identified and 1535 were validated in the mapping parents. A total of 267 polymorphic SSRs were selected for linkage map construction. The GBS yielded 3923 high quality single nucleotide polymorphisms (SNPs) in the mapping population, resulting in a total of 4190 markers that were used to generate maps for each parent and a consensus map. The consensus linkage map contained 1767 positioned markers (146 SSRs and 1621 SNPs), spanned 1383.4 centiMorgans (cM), and was comprised of 18 linkage groups, with an average mapping interval of 0.8 cM. The transcriptome information and large-scale marker development in this study greatly expanded the genetic resources that are available for hydrangea. The high-density genetic linkage maps presented here will serve as an important foundation for quantitative trait loci mapping, map-based gene cloning, and marker-assisted selection of H. macrophylla.


Genetics ◽  
1995 ◽  
Vol 140 (2) ◽  
pp. 703-724 ◽  
Author(s):  
A M Crawford ◽  
K G Dodds ◽  
A J Ede ◽  
C A Pierson ◽  
G W Montgomery ◽  
...  

Abstract We report the first extensive ovine genetic linkage map covering 2070 cM of the sheep genome. The map was generated from the linkage analysis of 246 polymorphic markers, in nine three-generation full-sib pedigrees, which make up the AgResearch International Mapping Flock. We have exploited many markers from cattle so that valuable comparisons between these two ruminant linkage maps can be made. The markers, used in the segregation analyses, comprised 86 anonymous microsatellite markers derived from the sheep genome, 126 anonymous microsatellites from cattle, one from deer, and 33 polymorphic markers of various types associated with known genes. The maximum number of informative meioses within the mapping flock was 222. The average number of informative meioses per marker was 140 (range 18-209). Linkage groups have been assigned to all 26 sheep autosomes.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2267
Author(s):  
Ye-Rin Lee ◽  
Cheol Woo Kim ◽  
JiWon Han ◽  
Hyun Jin Choi ◽  
Koeun Han ◽  
...  

Onion (2n = 2x = 16) has been a nutritional, medicinal and economically valuable vegetable crop all over the world since ancient times. To accelerate the molecular breeding in onion, genetic linkage maps are prerequisite. However, construction of genetic linkage maps of onion remains relatively rudimentary due to a large genome (about 16.3 Gbp) as well as biennial life cycle, cross-pollinated nature, and high inbreeding depression. In this study, we constructed single nucleotide polymorphism (SNP)-based genetic linkage map of onion in an F2 segregating population derived from a cross between the doubled haploid line ‘16P118′ and inbred line ‘Sweet Green’ through genotyping by sequencing (GBS). A total of 207.3 Gbp of raw sequences were generated using an Illumina HiSeq X system, and 24,341 SNPs were identified with the criteria based on three minimum depths, lower than 30% missing rate, and more than 5% minor allele frequency. As a result, an onion genetic linkage map consisting of 216 GBS-based SNPs were constructed comprising eight linkage groups spanning a genetic length of 827.0 cM. Furthermore, we identified the quantitative trait loci (QTLs) for the sucrose, glucose, fructose, and total sugar content across the onion genome. We identified a total of four QTLs associated with sucrose (qSC4.1), glucose (qGC5.1), fructose (qFC5.1), and total sugar content (qTSC5.1) explaining the phenotypic variation (R2%) ranging from 6.07–11.47%. This map and QTL information will contribute to develop the molecular markers to breed the cultivars with high sugar content in onion.


Sign in / Sign up

Export Citation Format

Share Document