vibrio anguillarum
Recently Published Documents


TOTAL DOCUMENTS

877
(FIVE YEARS 127)

H-INDEX

63
(FIVE YEARS 7)

2021 ◽  
Vol 12 ◽  
Author(s):  
Quanxin Gao ◽  
Shaokui Yi ◽  
Yang Li ◽  
Jinping Luo ◽  
Qianqian Xing ◽  
...  

Vibrio anguillarum, an opportunistic pathogen of aquatic animals, moves using a filament comprised of polymerised flagellin proteins. Flagellins are essential virulence factors for V. anguillarum infection. Herein, we investigated the effects of flagellins (flaA, flaB, flaC, flaD and flaE) on cell apoptosis, TLR5 expression, and production of IL-8 and TNF-α. FlaB exhibited the strongest immunostimulation effects. To explore the functions of flaB in infection, we constructed a flaB deletion mutant using a two-step recombination method, and in vitro experiments showed a significant decrease in the expression of TLR5 and inflammatory cytokines compared with wild-type cells. However in the in vivo study, expression of inflammatory cytokines and intestinal mucosal structure showed no significant differences between groups. Additionally, flaB induced a significant increase in TLR5 expression based on microscopy analysis of fluorescently labelled TLR5, indicating interactions between the two proteins, which was confirmed by native PAGE and yeast two-hybrid assay. Molecular simulation of interactions between flaB and TLR5 was performed to identify the residues involved in binding, revealing two binding sites. Then, based on molecular dynamics simulations, we carried out thirteen site-directed mutations occurring at the amino acid sites of Q57, N83, N87, R91, D94, E122, D152, N312, R313, N320, L97, H316, I324 in binding regions of flaB protein by TLR5, respectively. Surface plasmon resonance (SPR) was employed to compare the affinities of flaB mutants for TLR5, and D152, D94, I324, N87, R313, N320 and H316 were found to mediate interactions between flaB and TLR5. Our comprehensive and systematic analysis of V. anguillarum flagellins establishes the groundwork for future design of flagellin-based vaccines.


2021 ◽  
Vol 9 (11) ◽  
pp. 2399
Author(s):  
Miguel Balado ◽  
Diego Rey-Varela ◽  
Ana M. Albela ◽  
Manuel L. Lemos

Bismuth is a heavy metal with antibacterial properties that has a long history of medicinal use. The results reported here suggest that bismuth(III) (chelated with deferiprone) could be used in aquaculture systems to treat bacterial disease outbreaks, greatly reducing antibiotic use. We tested bismuth susceptibility in a collection of aquaculture bacterial pathogens. In the presence of bismuth concentrations ranging from 1.3 to 13 µM, most bacteria started showing a drastic decrease in their growth ability, although with high inter- and intraspecific variability. The minimal inhibitory concentrations of bismuth ranged from 13 to more than 780 µM, depending on bacterial species and strain. The results of in vivo assays suggest that low concentrations of bismuth could be especially effective to treat vibriosis caused by Vibrio anguillarum, since bismuth greatly reduced mortality in experimentally infected fish without any observable side effects. A bismuth therapy, alone or combined with other antimicrobials, could contribute to reduce the use of antibiotics in aquaculture.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marta A. Lages ◽  
Manuel L. Lemos ◽  
Miguel Balado

The high-pathogenicity island irp-HPI is widespread among Vibrionaceae encoding the piscibactin siderophore system. The expression of piscibactin genes in the fish pathogen Vibrio anguillarum is favored by low temperatures. However, information about the regulatory mechanism behind irp-HPI gene expression is scarce. In this work, in-frame deletion mutants of V. anguillarum defective in the putative regulators AraC1 and AraC2, encoded by irp-HPI, and in the global regulators H-NS and ToxRS, were constructed and their effect on irp-HPI gene expression was analyzed at 15 and 25°C. The results proved that only AraC1 (renamed as PbtA) is required for the expression of piscibactin biosynthesis and transport genes. PbtA inactivation led to an inability to grow under iron restriction, a loss of the outer membrane piscibactin transporter FrpA, and a significant decrease in virulence for fish. Inactivation of the global repressor H-NS, which is involved in silencing of horizontally acquired genes, also resulted in a lower transcriptional activity of the frpA promoter. Deletion of toxR-S, however, did not have a relevant effect on the expression of the irp-HPI genes. Therefore, while irp-HPI would not be part of the ToxR regulon, H-NS must exert an indirect effect on piscibactin gene expression. Thus, the temperature-dependent expression of the piscibactin-encoding pathogenicity island described in V. anguillarum is the result of the combined effect of the AraC-like transcriptional activator PbtA, harbored in the island, and other not yet defined regulator(s) encoded by the genome. Furthermore, different expression patterns were detected within different irp-HPI evolutionary lineages, which supports a long-term evolution of the irp-HPI genomic island within Vibrionaceae. The mechanism that modulates piscibactin gene expression could also be involved in global regulation of virulence factors in response to temperature changes.


2021 ◽  
Vol 118 (47) ◽  
pp. e2111418118
Author(s):  
Aftab Nadeem ◽  
Raghavendra Nagampalli ◽  
Eric Toh ◽  
Athar Alam ◽  
Si Lhyam Myint ◽  
...  

The protein MakA was discovered as a motility-associated secreted toxin from Vibrio cholerae. Here, we show that MakA is part of a gene cluster encoding four additional proteins: MakB, MakC, MakD, and MakE. MakA, MakB, and MakE were readily detected in culture supernatants of wild-type V. cholerae, whereas secretion was very much reduced from a flagellum-deficient mutant. Crystal structures of MakA, MakB, and MakE revealed a structural relationship to a superfamily of bacterial pore-forming toxins. Expression of MakA/B/E in Escherichia coli resulted in toxicity toward Caenorhabditis elegans used as a predatory model organism. None of these Mak proteins alone or in pairwise combinations were cytolytic, but an equimolar mixture of MakA, MakB, and MakE acted as a tripartite cytolytic toxin in vitro, causing lysis of erythrocytes and cytotoxicity on cultured human colon carcinoma cells. Formation of oligomeric complexes on liposomes was observed by electron microscopy. Oligomer interaction with membranes was initiated by MakA membrane binding followed by MakB and MakE joining the assembly of a pore structure. A predicted membrane insertion domain of MakA was shown by site-directed mutagenesis to be essential for toxicity toward C. elegans. Bioinformatic analyses revealed that the makCDBAE gene cluster is present as a genomic island in the vast majority of sequenced genomes of V. cholerae and the fish pathogen Vibrio anguillarum. We suggest that the hitherto-unrecognized cytolytic MakA/B/E toxin can contribute to Vibrionaceae fitness and virulence potential in different host environments and organisms.


Author(s):  
Marta A. Lages ◽  
M. Carmen de la Fuente ◽  
Lucía Ageitos ◽  
Diana Martínez-Matamoros ◽  
Jaime Rodríguez ◽  
...  

AbstractPiscibactin (Pcb) is a labile siderophore widespread among Vibrionaceae. Its production is a major virulence factor of some fish pathogens such as Photobacterium damselae subsp. piscicida and Vibrio anguillarum. Although FrpA was previously suggested as the putative outer membrane transporter (OMT) for ferri-piscibactin, its role in piscibactin uptake was never demonstrated. In this work, we generated mutants of V. anguillarum defective in FrpA and analyzed their ability to use piscibactin as iron source. The results showed that inactivation of frpA completely disables piscibactin utilization, and the original phenotype could be restored by gene complementation, confirming that FrpA is the OMT that mediates ferri-Pcb uptake. Additionally, the ability of several Pcb thiazole analogues, with different configurations at positions 9, 10, and 13, to be internalized through FrpA, was evaluated measuring their ability to promote growth under iron deficiency of several indicator strains. The results showed that while those analogues with a thiazole ring maintain almost the same activity as Pcb, the maintenance of the hydroxyl group present in natural piscibactin configuration at position C-13 is crucial for Fe3+ chelation and, in consequence, for the recognition of the ferri-siderophore by the cognate OMT. All these findings allowed us to propose a Pcb analogue as a good candidate to vectorize antimicrobial compounds, through the Trojan horse strategy, to develop novel compounds against bacterial fish diseases. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document