scholarly journals Impaired local regulation of ryanodine receptor type-2 by protein phosphatase 1 promotes atrial fibrillation

2013 ◽  
Vol 34 (suppl 1) ◽  
pp. P5016-P5016
Author(s):  
D. Y. Chiang ◽  
N. Li ◽  
G. Wang ◽  
Q. Wang ◽  
A. Quick ◽  
...  
2014 ◽  
Vol 103 (1) ◽  
pp. 178-187 ◽  
Author(s):  
David Y. Chiang ◽  
Na Li ◽  
Qiongling Wang ◽  
Katherina M. Alsina ◽  
Ann P. Quick ◽  
...  

2014 ◽  
Vol 7 (6) ◽  
pp. 1214-1222 ◽  
Author(s):  
David Y. Chiang ◽  
Natee Kongchan ◽  
David L. Beavers ◽  
Katherina M. Alsina ◽  
Niels Voigt ◽  
...  

2018 ◽  
Vol 124 ◽  
pp. 108
Author(s):  
Katherina Alsina ◽  
Mohit Hulsurkar ◽  
Chunxia Yao ◽  
Barbara Langer ◽  
David Chiang ◽  
...  

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Srikanth Perike ◽  
Xander Wehrens ◽  
Dawood Darbar ◽  
Mark McCauley

Background: Atrial fibrillation (AF) is the most common cardiac arrhythmia, and increases a patient’s stroke risk five-fold. Reduced atrial contractility (stunning) is observed in AF and contributes to stroke risk; however, the mechanisms responsible for atrial stunning in AF are unknown. Recent data from our laboratory indicate that protein phosphatase 1 (PP1) dephosphorylation of myosin light chain 2a (MLC2a) may contribute to atrial stunning in AF. Objective: To determine how the PP1 regulatory subunit 12C (PPP1R12C) and catalytic (PPP1c) subunits modify atrial sarcomere phosphorylation in AF. Methods: We evaluated the protein expression, binding and phosphorylation among PPP1R12C, PPP1c, and MLC2a in transfected HL-1 cells, murine atrial tissue (Pitx2null +/– mice, with a genetic predisposition AF), and in HEK cells. An inhibitor of PPP1R12C phosphorylation, BDP5290, was used to enhance the PPP1R12C-PPP1C interaction. Results: In Pitx2 null +/– mice, PPP1R12C was increased by 2-fold ( P <0.01) and associated with a 40% reduction in S-19-MLC2a phosphorylation versus WT mice ( P <0.058). BDP5290 increased PPP1R12C-PPP1C binding by >3-fold in HL-1 cells ( P <0.01). BDP5290 reduced MLC2a phosphorylation by 40% through an enhanced interaction with PPP1R12C by >3-fold in HEK cells ( P <0.01). Conclusion: In Pitx2 null+/- mice, increased expression of PPP1R12C is associated with PP1 holoenzyme targeting to sarcomeric MLC2a, and is associated with reduced S19-MLC2a phosphorylation. Additionally, BDP5290 enhances the PPP1R12C-PPP1C interaction and models PP1 activity in AF. Future studies will examine the effects of both AF and BDP5290 upon atrial contractility in vitro.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Srikanth Perike ◽  
Katherina M Alsina ◽  
Arvind Sridhar ◽  
Dawood Darbar ◽  
Xander Wehrens ◽  
...  

Background: Atrial fibrillation (AF) increases stroke risk five-fold. Atrial hypocontractility from atrial myosin light chain (MLC2a) dephosphorylation contributes to stroke risk in AF. Recent proteomic data has shown increased protein phosphatase 1 subunit 12C (PPP1R12C) targeting to MLC2a in AF. However, it is unclear whether PPP1R12C causes MLC2a dephosphorylation in AF. Objective: Determine whether increased PPP1R12C expression causes MLC2a dephosphorylation and increases AF risk. Methods: Western blots and co-IPs were performed to evaluate the relationship among PPP1R12C, PP1c and MLC2a in human atrial tissues (AF vs SR). Mice with either a knockout (KO) or lentiviral (LV) cardiac overexpression of PPP1R12C were evaluated with invasive EP studies for AF inducibility vs WT controls. Results: In human AF, PPP1R12C was increased 4-fold ( P <0.005, n=6) with an 88% reduction in S-19-MLC2a phosphorylation ( P <0.05, n=4). PPP1R12C-PP1c and PPP1R12C-MLC2a binding was increased 2-fold in AF ( P <0.05, n=6). AF burden in LV-12C mice increased nearly tenfold vs. KO and WT mice ( P <0.05, n=6). Conclusion: In human AF, increased PPP1R12C expression is associated with reduced P-MLC2a through enhanced binding with the PP1c catalytic subunit. This dephosphorylation is a likely contributor to atrial hypocontractility and stroke risk in AF. Additionally, increased PPP1R12C expression in mice increases AF risk. Future studies will examine the effects of increased PPP1R12C expression upon atrial contractile function in mice.


2020 ◽  
Author(s):  
Tianxia Luo ◽  
Ningning Yan ◽  
Mengru Xu ◽  
Fengjuan Dong ◽  
Qian Liang ◽  
...  

Abstract Background: Ryanodine receptor type 2 (RyR2) mediate Ca 2+ release from the endoplasmic and sarcoplasmic reticulum (ER and SR), which is involved in the peripheral coupling of mouse cardiomyocytes, and thereby plays an important role in cardiac contraction. Junctophilin-2 (JPH2, JP2) is anchored to the plasma membrane (PM) and membranes of the ER and SR, and modulates intracellular Ca 2+ handling through regulation of RyR2. However, the potential RyR2 binding region of JPH2 is poorly understood. Methods: The interaction of JPH2 with RyR2 was studied using LC-MS/MS , bioinformatic analysis,co-immunoprecipitation studies in cardiac SR vesicles. GST-pull down analysis was performed to investigate the physical interaction between RyR2 and JPH2 fragments. Immunofluorescent staining was carried out to determine the colocalization of RyR2 and JPH2 in isolated mouse cardiomyocytes. Ion Optix photometry system was used to measure the levels of intracellular Ca 2+ transients in cardiomyocytes isolated from JPH2 knock down mice. Results: We report that (i) JPH2 interacts with RyR2 and (ii) the C terminus of the JPH2 protein can pull down RyR2 receptors. Confocal immunofluorescence imaging indicated that the majority of JPH2 and RyR2 proteins were colocalized near Z-lines. A decrease in the levels of JPH2 expression reduced the amplitude of Ca 2+ transients in cardiomyocytes. Conclusions: This study suggests that the C terminus domain of JPH2 is required for interactions with RyR2 in the context of peripheral coupling of mouse cardiomyocytes, which provide a molecular mechanism for looking for Ca 2+ - related diseases prevention strategies.


Sign in / Sign up

Export Citation Format

Share Document