scholarly journals Enhancing the precision of broad-scale forestland removals estimates with small area estimation techniques

Author(s):  
John W Coulston ◽  
P Corey Green ◽  
Philip J Radtke ◽  
Stephen P Prisley ◽  
Evan B Brooks ◽  
...  

Abstract National Forest Inventories (NFI) are designed to produce unbiased estimates of forest parameters at a variety of scales. These parameters include means and totals of current forest area and volume, as well as components of change such as means and totals of growth and harvest removals. Over the last several decades, there has been a steadily increasing demand for estimates for smaller geographic areas and/or for finer temporal resolutions. However, the current sampling intensities of many NFI and the reliance on design-based estimators often leads to inadequate precision of estimates at these scales. This research focuses on improving the precision of forest removal estimates both in terms of spatial and temporal resolution through the use of small area estimation techniques (SAE). In this application, a Landsat-derived tree cover loss product and the information from mill surveys were used as auxiliary data for area-level SAE. Results from the southeastern US suggest improvements in precision can be realized when using NFI data to make estimates at relatively fine spatial and temporal scales. Specifically, the estimated precision of removal volume estimates by species group and size class was improved when SAE methods were employed over post-stratified, design-based estimates alone. The findings of this research have broad implications for NFI analysts or users interested in providing estimates with increased precision at finer scales than those generally supported by post-stratified estimators.

2012 ◽  
Vol 66 (2) ◽  
pp. 105-122 ◽  
Author(s):  
Fiifi Amoako Johnson ◽  
Sabu S. Padmadas ◽  
Hukum Chandra ◽  
Zoe Matthews ◽  
Nyovani J. Madise

PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0189401 ◽  
Author(s):  
Francisco Mauro ◽  
Vicente J. Monleon ◽  
Hailemariam Temesgen ◽  
Kevin R. Ford

2014 ◽  
Vol 44 (9) ◽  
pp. 1079-1090 ◽  
Author(s):  
Steen Magnussen ◽  
Daniel Mandallaz ◽  
Johannes Breidenbach ◽  
Adrian Lanz ◽  
Christian Ginzler

This study introduces five facets that can improve inference in small area estimation (SAE) problems: (1) model groups, (2) test of area effects, (3) conditional EBLUPs, (4) model selection, and (5) model averaging. Two contrasting case studies with data from the Swiss and Norwegian national forest inventories demonstrate the five facets. The target variable of interest was mean stem volume per hectare on forested land in 108 Swiss forest districts (FD) and in 14 Norwegian municipalities (KOM) in the County of Vestfold. Auxiliary variables from airborne laser scanning (Switzerland) and photogrammetric point clouds (Vestfold) with full coverage and a resolution of 25 m × 25 m (Switzerland) and 16 m × 16 m (Vestfold) were available. Only the data metric mean canopy height was statistically significant. Ten linear fixed-effects models and three mixed linear models were assessed. Area effects were statistically significant in the Swiss case but not in Vestfold case. A model selection based on AIC favored separate linear regression models for each FD and a single common regression model in Vestfold. Model averaging increased, on average, an estimated variance by 15%. Reported estimates of uncertainty were consistently larger than corresponding unconditional EBLUPs.


2020 ◽  
pp. 1-14
Author(s):  
María-Dolores Esteban ◽  
Domingo Morales ◽  
Agustin Pérez ◽  
Stefan Sperlich

Nowadays, national and international organizations experience an increasing demand for timely and disaggregated socio-economic indicators. More recently, this demand extends to the request for nowcasting indicators. Small Area Estimation has a long tradition in indicator prediction for high levels of disaggregation; but when speaking of ‘prediction’, this notation refers to the fact that the centre of interest is a random parameter. Prediction of future values, or similarly, nowcasting has hardly been studied so far. Yet, mixed models based Small Area Estimation is designed for imputing (missing) values, and these models can easily account for temporal correlation. Therefore, model assisted nowcasting would be a natural extension. This article reviews existing methods under this perspective to highlight the necessary ingredients, and then propose nowcasting procedures for highly disaggregated indicators that could already be used with the today’s available software.


Sign in / Sign up

Export Citation Format

Share Document