scholarly journals PLOIDY BARRIER TO ENDOSPERM DEVELOPMENT IN MAIZE

Genetics ◽  
1984 ◽  
Vol 107 (1) ◽  
pp. 103-115
Author(s):  
Bor-Yaw Lin

ABSTRACT Maize kernels inheriting the indeterminate gametophyte mutant (ig) on the female side had endosperms that ranged in ploidy level from diploid (2x) to nonaploid (9x). In crosses with diploid males, only kernels of the triploid endosperm class developed normally. Kernels of the tetraploid endosperm class were half-sized but with well-developed embryos that regularly germinated. Kernels of endosperm composition other than triploid or tetraploid were abortive.—Endosperm ploidy level resulting from mating ig/igx tetraploid Ig similarly was variable. Most endosperms started to degenerate soon after pollination and remained in an arrested state. Hexaploid endosperm was exceptional; it developed normally during the sequence of stages studied and accounted for plump kernels on mature ears. Since such kernels have diploid maternal tissues (pericarp) but triploid embryos, the present finding favors the view that endosperm failure or success in such circumstances is governed by conditions within the endosperm itself.—Whereas tetraploid endosperm consisting of three maternal genomes and one paternal genome is slightly reduced in size but supports viable seed development, that endosperm having two maternal and two paternal chromosome sets was highly defective and conditioned abortion. Thus, development of maize endosperm evidently is affected by the parental source of its sets of chromosomes.

2008 ◽  
Vol 22 (4) ◽  
pp. 527-541 ◽  
Author(s):  
Luca Pasini ◽  
Maria Rosaria Stile ◽  
Enrico Puja ◽  
Rita Valsecchi ◽  
Priscilla Francia ◽  
...  

2003 ◽  
Vol 133 (3) ◽  
pp. 1285-1295 ◽  
Author(s):  
Jose A. Lopez-Valenzuela ◽  
Bryan C. Gibbon ◽  
Peter A. Hughes ◽  
Theo W. Dreher ◽  
Brian A. Larkins

1986 ◽  
Vol 28 (4) ◽  
pp. 581-586 ◽  
Author(s):  
W. A. Parrott ◽  
R. R. Smith

The endosperm balance number (EBN) hypothesis was first advanced to explain results from interspecific crosses in Solanum and later in Impatiens. According to the EBN hypothesis, normal endosperm development following intra- or inter-specific crosses depends on having a ratio of two EBNs from the female to one EBN from the male in the endosperm tissue. EBNs may differ among related species. Successful hybrids can be obtained between species with the same EBN. The ploidy level of an individual species can be varied to modify its EBN, making it cross compatible with a species sharing its modified EBN. Interspecific crosses within Trifolium have been limited and difficult. Crosses reported in the literature, including evidence from our own study, suggest that EBN is operating in Trifolium and have been used to assign EBN numbers to some clover species. The use of 2n eggs enabled two species, differing in EBN, to be crossed. An understanding of the EBN mechanism that operates in Trifolium should make successful interspecific hybrids easier to obtain in the future.Key words: endosperm balance number, hybrids (interspecific), 2n gametes, Trifolium.


2011 ◽  
Vol 24 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Hun Kim ◽  
Charles P. Woloshuk

The putative hexose transporter gene fst1 in Fusarium verticillioides was identified previously by microarray analysis as a gene that was more highly expressed during colonization of autoclaved maize endosperm than germ. In contrast to a previous study, in which disruption of fst1 did not affect growth of the pathogen on autoclaved maize kernels, in the current study, we demonstrated that disruption of fst1 delayed growth and symptom development on wounded maize ears. Characterization of the fst1 promoter revealed that regulation of fst1 expression was similar to that of fumonisin biosynthetic (fum) genes; expression was highest during growth on endosperm tissue and repressed by elevated concentrations of ammonium in the growth medium. With a fluorescent tag attached to FST1, the protein localized transiently to the periphery of the cells near the plasma membrane and in vacuole-like structures, suggesting that membrane-localized FST1 was internalized and degraded in vacuoles. Expression of fst1 in a yeast strain lacking hexose transporter genes did not complement the yeast mutation, suggesting that FST1 does not transport glucose, fructose, or mannose. The results indicate a functional role for FST1 in pathogenesis during the colonization of living kernels.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Eun-Deok Kim ◽  
Yuqing Xiong ◽  
Youngjae Pyo ◽  
Dong-Hwan Kim ◽  
Byung-Ho Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document