maize kernels
Recently Published Documents


TOTAL DOCUMENTS

519
(FIVE YEARS 101)

H-INDEX

45
(FIVE YEARS 7)

2022 ◽  
pp. 132147
Author(s):  
Mengmeng Qiao ◽  
Guoyi Xia ◽  
Tao Cui ◽  
Yang Xu ◽  
Xiaojun Gao ◽  
...  

Author(s):  
Z. F. Huang ◽  
L. Y. Hou ◽  
J. Xue ◽  
K. R. Wang ◽  
R. Z. Xie ◽  
...  

Abstract The extent of the reduction of maize (Zea mays L.) kernel moisture content through drying is closely related to field temperature (or accumulated temperature; AT) following maturation. In 2017 and 2018, we selected eight maize hybrids that are widely planted in Northeastern China to construct kernel drying prediction models for each hybrid based on kernel drying dynamics. In the traditional harvest scenario using the optimal sowing date (OSD), maize kernels underwent drying from 4th September to 5th October, with variation coefficients of 1.0–1.9. However, with a latest sowing date (LSD), drying occurred from 14th September to 31st October, with variation coefficients of 1.3–3.0. In the changed harvest scenario, the drying time of maize sown on the OSD condition was from 12th September to 9th November with variation coefficients of 1.3–3.0, while maize sown on the LSD had drying dates of 26th September to 28th October with variation coefficients of 1.5–3.6. In the future harvest scenario, the Fengken 139 (FK139) and Jingnongke 728 (JNK728) hybrids finished drying on 20th October and 8th November, respectively, when sown on the OSD and had variation coefficients of 2.7–2.8. Therefore, the maize kernel drying time was gradually delayed and was associated with an increased demand for AT ⩾ 0°C late in the growing season. Furthermore, we observed variation among different growing seasons likely due to differences in weather patterns, and that sowing dates impact variations in drying times to a greater extent than harvest scenarios.


Author(s):  
Alexandra Schamann ◽  
Markus Schmidt-Heydt ◽  
Rolf Geisen

AbstractNon-aflatoxigenic Aspergillus flavus strains are used as a biocontrol system on maize fields to decrease the aflatoxin biosynthesis of aflatoxigenic A. flavus strains. A. flavus strain AF36 was the first commercially available biocontrol strain and is authorized for use on maize fields by the US Environmental Protection Agency, e.g., in Texas and Arizona. A droplet digital PCR (ddPCR) assay was developed to analyze the mechanisms of competition and interaction of aflatoxigenic and non-aflatoxigenic A. flavus strains. This assay enables the parallel identification and quantification of the biocontrol strain A. flavus AF36 and the aflatoxigenic A. flavus strain MRI19. To test the assay, spores of both strains were mixed in varying ratios and were incubated on maize-based agar or maize kernels for up to 20 days. Genomic equivalent ratios (genome copy numbers) of both strains were determined by ddPCR at certain times after incubation and were compared to the spore ratios used for inoculation. The aflatoxin biosynthesis was also measured. In general, A. flavus MRI19 had higher competitiveness in the tested habitats compared to the non-aflatoxigenic strain, as indicated by higher final genomic equivalent ratios of this strain compared to the spore ratios used for inoculation. Nevertheless, A. flavus AF36 effectively controlled aflatoxin biosynthesis of A. flavus MRI19, as a clear aflatoxin inhibition was already seen by the inoculation of 10% spores of the biocontrol strain mixed with 90% spores of the aflatoxigenic strain compared to samples inoculated with only spores of the aflatoxigenic A. flavus MRI19.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2509
Author(s):  
Lorena Álvarez-Iglesias ◽  
Rosa Ana Malvar ◽  
Raquel Garzón ◽  
Cristina M. Rosell ◽  
Pedro Revilla

Maize’s (Zea mays L.) nutrient content can be modified through selection. The objective of this study was to assess the nutritive value of 13 maize hybrids from four endosperm types, and the relationship between nutrient concentration, agronomic and rheological value. The hybrids were evaluated in two locations of Northwestern Spain over two years. There was genetic diversity among endosperm types and genotypes for all nutrients, with significant environmental effects, but few genotype × environment interactions. Flint hybrids had the highest protein and lipid content. The mutant wx1 significantly increased protein and reduced lipid, and both wx1 and o2 reduced ash and starch content and increased total fiber. Variability among hybrids within the wx1 endosperm was significant for most nutrients. Correlations between nutrients were rarely significant, implying that protein and lipid can be improved independently. Protein and lipid were negatively correlated with grain yield and plant height. However, improving nutrient content could alter agronomic performance, as nutrients had significant negative effects on rheological factors, particularly protein and lipid, which had negative effects on whole meal and on bread characteristics. Therefore, nutrient content can be improved in maize, but negative effects on agronomic and quality have to be taken into account.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Monica A. Schmidt ◽  
Yizhou Mao ◽  
Joseph Opoku ◽  
Hillary L. Mehl

Abstract Background Aflatoxins are carcinogenic compounds produced by certain species of Aspergillus fungi. The consumption of crops contaminated with this toxin cause serious detrimental health effects, including death, in both livestock and humans. As a consequence, both the detection and quantification of this toxin in food/feed items is tightly regulated with crops exceeding the allowed limits eliminated from food chains. Globally, this toxin causes massive agricultural and economic losses each year. Results In this paper we investigate the feasibility of using an aflatoxin-degrading enzyme strategy to reduce/eliminate aflatoxin loads in developing maize kernels. We used an endoplasmic reticulum (ER) targeted sub-cellular compartmentalization stabilizing strategy to accumulate an aflatoxin-degrading enzyme isolated from the edible Honey mushroom Armillariella tabescens and expressed it in embryo tissue in developing maize kernels. Three transgenic maize lines that were determined to be expressing the aflatoxin-degrading enzyme both at the RNA and protein level, were challenged with the aflatoxin-producing strain Aspergillus flavus AF13 and shown to accumulate non-detectable levels of aflatoxin at 14-days post-infection and significantly reduced levels of aflatoxin at 30-days post-infection compared to nontransgenic control Aspergillus-challenged samples. Conclusions The expression of an aflatoxin-degrading enzyme in developing maize kernels was shown to be an effective means to control aflatoxin in maize in pre-harvest conditions. This aflatoxin-degradation strategy could play a significant role in the enhancement of both US and global food security and sustainability.


Author(s):  
Fuxing Lin ◽  
Xiaoyu Zhu ◽  
Jing Sun ◽  
Fanqiang Meng ◽  
Zhaoxin Lu ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 847
Author(s):  
Milica Nikolić ◽  
Iva Savić ◽  
Ana Nikolić ◽  
Marko Jauković ◽  
Vesna Kandić ◽  
...  

In Serbia, aspergillus ear rot caused by the disease pathogen Aspergillus parasiticus (A. parasiticus) was first detected in 2012 under both field and storage conditions. Global climate shifts, primarily warming, favour the contamination of maize with aflatoxins in temperate climates, including Serbia. A five-year study (2012–2016) comprising of 46 A. parasiticus strains isolated from maize kernels was performed to observe the morphological, molecular, pathogenic, and toxigenic traits of this pathogen. The HPLC method was applied to evaluate mycotoxin concentrations in this causal agent. The A. parasiticus isolates synthesised mainly aflatoxin AFB1 (84.78%). The percentage of isolates synthesising aflatoxin AFG1 (15.22%) was considerably lower. Furthermore, the concentration of AFG1 was higher than that of AFB1 in eight isolates. The polyphase approach, used to characterise isolates, showed that they were A. parasiticus species. This identification was verified by the multiplex RLFP-PCR detection method with the use of restriction enzymes. These results form an excellent baseline for further studies with the aim of application in the production, processing, and storage of cereal grains and seeds, and in technological processes to ensure the safe production of food and feed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lina Castano-Duque ◽  
Matthew K. Gilbert ◽  
Brian M. Mack ◽  
Matthew D. Lebar ◽  
Carol H. Carter-Wientjes ◽  
...  

Aspergillus flavus is an opportunistic fungal pathogen capable of producing aflatoxins, potent carcinogenic toxins that accumulate in maize kernels after infection. To better understand the molecular mechanisms of maize resistance to A. flavus growth and aflatoxin accumulation, we performed a high-throughput transcriptomic study in situ using maize kernels infected with A. flavus strain 3357. Three maize lines were evaluated: aflatoxin-contamination resistant line TZAR102, semi-resistant MI82, and susceptible line Va35. A modified genotype-environment association method (GEA) used to detect loci under selection via redundancy analysis (RDA) was used with the transcriptomic data to detect genes significantly influenced by maize line, fungal treatment, and duration of infection. Gene ontology enrichment analysis of genes highly expressed in infected kernels identified molecular pathways associated with defense responses to fungi and other microbes such as production of pathogenesis-related (PR) proteins and lipid bilayer formation. To further identify novel genes of interest, we incorporated genomic and phenotypic field data from a genome wide association analysis with gene expression data, allowing us to detect significantly expressed quantitative trait loci (eQTL). These results identified significant association between flavonoid biosynthetic pathway genes and infection by A. flavus. In planta fungal infections showed that the resistant line, TZAR102, has a higher fold increase of the metabolites naringenin and luteolin than the susceptible line, Va35, when comparing untreated and fungal infected plants. These results suggest flavonoids contribute to plant resistance mechanisms against aflatoxin contamination through modulation of toxin accumulation in maize kernels.


Sign in / Sign up

Export Citation Format

Share Document