scholarly journals A cytogenetic analysis of the Punch-tudor region of chromosome 2R in Drosophila melanogaster.

Genetics ◽  
1989 ◽  
Vol 121 (2) ◽  
pp. 273-280
Author(s):  
J O'Donnell ◽  
R Boswell ◽  
T Reynolds ◽  
W Mackay

Abstract Eleven chromosomal deficiencies and several rearrangements in the Pu-tud region of chromosome 2R have been generated and examined cytologically. The Pu locus has been localized to chromosome bands 57C5-6 and tud to 57C7-8. Mutagenesis within the region defined by the deletion intervals has resulted in the isolation of 92 new lethal mutations. Seventy-six of these mutations have been separated into 16 complementation groups that have been ordered and placed cytologically by deletion mapping. All new alleles fully complement tud for both lethal and grandchildless phenotypes. The largest number of new mutations, a total of 25, are Pu alleles.

Genetics ◽  
1986 ◽  
Vol 112 (4) ◽  
pp. 785-802
Author(s):  
Madeline A Crosby ◽  
Elliot M Meyerowitz

ABSTRACT We have conducted a genetic analysis of the region flanking the 68C glue gene cluster in Drosophila melanogaster by isolating lethal and semilethal mutations uncovered by deficiencies which span this region. Three different mutagens were used: ethyl methanesulfonate (EMS), ethyl nitrosourea (ENU) and diepoxybutane (DEB). In the region from 68A3 to 68C11, 64 lethal, semilethal, and visible mutations were recovered. These include alleles of 13 new lethal complementation groups, as well as new alleles of rotated, low xanthine dehydrogenase, lethal(3)517 and lethal(3)B76. Six new visible mutations from within this region were recovered on the basis of their reduced viability; all proved to be semiviable alleles of lethal complementation groups. No significant differences were observed in the distributions of lethals recovered using the three different mutagens. Each lethal was mapped on the basis of complementation with overlapping deficiencies; mutations that mapped within the same interval were tested for complementation, and the relative order of the lethal groups within each interval was determined by recombination. The cytological distribution of genes within the 68A3-68C11 region is not uniform: the region from 68A2,3 to 68B1,3 (seven to ten polytene chromosome bands) contains at least 13 lethal complementation groups and the mutation low xanthine dehydrogenase; the adjoining region from 68B1,3 to 68C5,6 (six to nine bands) includes the 68C glue gene cluster, but no known lethal or visible complementation groups; and the interval from 68C5,6 to 68C10,11 (three to five bands) contains at least three lethal complementation groups and the visible mutation rotated. The developmental stage at which lethality is observed was determined for a representative allele from each lethal complementation group.


Genetics ◽  
1980 ◽  
Vol 95 (2) ◽  
pp. 383-397
Author(s):  
R A Lewis ◽  
B T Wakimoto ◽  
R E Denell ◽  
T C Kaufman

ABSTRACT The existence of a gene complex in the proximal right arm of chromosome 3 of Drosophila melanogaster involved in the development of the head and thorax was originally suggested by the phenotypes of several dominant homoeotic mutations and their revertants. A screen for mutations utilizing Df(3R) AntpNS+R17 (proximally broken in salivary region 84B1,2) yielded, among 102 recovered mutations, 17 localized by deficiency mapping to the putative homoeotic cluster. These fell into four complementation groups, two of which were characterized by homoeotic phenotypes. To explore the limits of the Antennapedia gene complex (ANT-C) more proximally, a second screen has been undertaken utilizing Df(3R)Scr, a deficiency of 84A1-B1,2.——Of 2832 chromosomes screened, 21 bearing alterations localized to polytene interval 84A-84B1,2 have been recovered. Sixteen are recessive lethals, and five showing reduced viability display a visible phenotype in surviving individuals. Complementation and phenotypic analyses revealed four complementation groups proximal to those identified in the previous screen, including two new alleles of the recessive homoeotic mutation, proboscipedia (pb). Ten of the new mutations correspond to complementation groups defined previously in the Df(3R)AntpNS+R17 screen, four to the EbR11 group, two to the Scr group and four to the Antp group.——On the basis of the phenotypes of the 39 mutations localized to this region, plus their interactions with extant homoeotic mutations, we postulate that there are at least five functional sites comprising the ANT-C. Three have been demonstrated to he homoeotic in nature. The specific homoeotic transformations thus far observed suggest that these loci are critical for normal development of adult labial, maxillary and thoracic structures.


Genetics ◽  
1981 ◽  
Vol 98 (4) ◽  
pp. 775-789
Author(s):  
J Gausz ◽  
H Gyurkovics ◽  
G Bencze ◽  
A A M Awad ◽  
J J Holden ◽  
...  

ABSTRACT The region between 86F1,2 and 87B15 on chromosome 3 of Drosophila melanogaster, which contains about 27 polytene chromosome bands including the 87A7 heat-shock locus, has been screened for EMS-induced visible and lethal mutations. We have recovered 268 lethal mutations that fall into 25 complementation groups. Cytogenetic localization of the complementation groups by deficiency mapping is consistent with the notion that each band encodes a single genetic function. We have also screened for mutations at the 87A7 heat shock locus, using a chromosome that has only one copy of the gene encoding the 70,000 dalton heat-shock protein (hsp70). No lethal or visible mutations at 87A7 were identified from 10,719 mutagenized chromosomes, and no female-sterile mutations at 87A7 were recovered from the 1,520 chromosomes whose progeny were tested for female fertility. We found no evidence that a functional hsp70 gene is required for development under laboratory conditions.


Genetics ◽  
1992 ◽  
Vol 130 (3) ◽  
pp. 569-583
Author(s):  
D F Eberl ◽  
L A Perkins ◽  
M Engelstein ◽  
A J Hilliker ◽  
N Perrimon

Abstract Polytene section 17 of the X chromosome of Drosophila melanogaster, previously known to contain six putative lethal complementation groups important in oogenesis and embryogenesis, has here been further characterized genetically and developmentally. We constructed fcl+Y, a duplication of this region, which allowed us to conduct mutagenesis screens specific for the region and to perform complementation analyses (previously not possible). We recovered 67 new lethal mutations which defined 15 complementation groups within Df(1)N19 which deletes most of polytene section 17. The zygotic lethal phenotypes of these and preexisting mutations within polytene section 17 were examined, and their maternal requirements were analysed in homozygous germline clones using the dominant female sterile technique. We present evidence that an additional gene, which produces two developmentally regulated transcripts, is located in this region and is involved in embryogenesis, although no mutations in this gene were identified. In this interval of 37 to 43 polytene chromosome bands we have defined 17 genes, 12 (71%) of which are of significance to oogenesis or embryogenesis.


Genetics ◽  
1993 ◽  
Vol 135 (1) ◽  
pp. 105-115
Author(s):  
P Heitzler ◽  
D Coulson ◽  
M T Saenz-Robles ◽  
M Ashburner ◽  
J Roote ◽  
...  

Abstract A cytogenetic analysis of the 43A-E region of chromosome 2 in Drosophila melanogaster is presented. Within this interval 27 complementation groups have been identified by extensive F2 screens and ordered by deletion mapping. The region includes the cellular polarity genes prickle and spiny-legs, the segmentation genes costa and torso, the morphogenetic locus sine oculis and is bounded on its distal side by the eye-color gene cinnabar. In addition 19 novel lethal complementation groups and two semi-lethal complementation groups with morphogenetic escaper phenotypes are described.


Genetics ◽  
1977 ◽  
Vol 86 (3) ◽  
pp. 553-566
Author(s):  
Janis O'Donnell ◽  
Howard C Mandel ◽  
Marc Krauss ◽  
William Sofer

ABSTRACT Eighteen Adh-negative mutations were selected with 1-pentyn-3-ol after feeding of formaldehyde. Twelve of the 18 were shown by cytological and genetic analysis to be deletions. Cytological examination of the deletions allowed us to localize the Adh gene to a region including bands 35B3-5 on the left arm of chromosome 2. The deletions were also used to order known visible loci located near Adh.—The vital loci near Adh were also investigated. A total of 109 lethal mutations were generated with EMS and 33 of these, localized within a region defined by the overlap of two of the deletions, were found to belong to 13 complementation groups. If one includes three other loci known to belong there (el, Adh and Sco), a total of 16 complementation groups have been identified in the region close to Adh.


Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 221-230 ◽  
Author(s):  
N J Clegg ◽  
I P Whitehead ◽  
J K Brock ◽  
D A Sinclair ◽  
R Mottus ◽  
...  

Abstract Cytogenetic region 31 of the second chromosome of Drosophila melanogaster was screened for recessive lethal mutations. One hundred and thirty nine new recessive lethal alleles were isolated that fail to complement Df(2L)J2 (31A-32A). These new alleles, combined with preexisting mutations in the region, define 52 complementation groups, 35 of which have not previously been described. Among the new mutations were alleles of the cdc2 and mfs(2)31 genes. Six new deficiencies were also isolated and characterized identifying 16 deficiency subintervals within region 31. The new deficiencies were used to further localize three loci believed to encode non-histone chromosomal proteins. Suvar(2)1/Su(var)214, a dominant suppressor of position-effect variegation (PEV), maps to 31A-B, while the recessive suppressors of PEV mfs(2)31 and wdl were localized to regions 31E and 31F-32A, respectively. In addition, the cytological position of several mutations that interact with heterochromatin were more precisely defined.


Genetics ◽  
1984 ◽  
Vol 106 (2) ◽  
pp. 249-265
Author(s):  
Jym Mohler ◽  
Mary Lou Pardue

ABSTRACT The region containing subdivisions 93C, 93D and 93E on chromosome 3 of Drosophila melanogaster has been screened for visible and lethal mutations. Treatment with three mutagens, γ irradiation, ethyl methanesulfonate and diepoxybutane, has produced mutations that fall into 20 complementation groups, including the previously identified ebony locus. No point mutations affecting the heat shock locus in 93D were detected; however, a pair of deficiencies that overlap in the region of this locus was isolated. Flies heterozygous in trans for this pair of deficiencies are capable of producing all of the major heat shock puffs (except 93D) and the major heat shock proteins. In addition, these flies show recovery of normal protein synthesis following a heat shock.


Genetics ◽  
1980 ◽  
Vol 95 (1) ◽  
pp. 95-110 ◽  
Author(s):  
Arthur J Hilliker ◽  
Stephen H Clark ◽  
Arthur Chovnick ◽  
William M Gelbart

ABSTRACT This report describes the genetic analysis of a region of the third chromosome of Drosophila melanogaster extending from 87D2-4 to 87E12-F1, an interval of 23 or 24 polytene chromosome bands. This region includes the rosy (ry, 3-52.0) locus, carrying the structural information for xanthine dehydrogenase (XDH). We have, in recent years, focused attention on the genetic regulation of the rosy locus and, therefore, wished to ascertain in detail the immediate genetic environmcnt of this locus. Specifically, we question if rosy is a solitary genetic unit or part of a larger complex genetic unit encompassing adjacent genes. Our data also provide opportunity to examine further the relationship between euchromatic gene distrihution and polytene chromosome structure.—The results of our genetic dissection of the rosy microregion substantiate the conclusion drawn earlier (SCHALET, KERNAGHAN and CHOVNICK 1964) that the rosy locus is the only gene in this region concerned with XDH activity and that all adjacent genetic units are functionally, as well as spatially, distinct Erom the rosy gene. Within the rosy micro-region, we observed a close correspondence between the number of complementation groups (21) and the number of polytene chromosome bands (23 or 24). Consideration of this latter observation in conjunction with those of similar studies of other chhromosomal regions supports the hypothesis that each polytene chromosome band corresponds to a single genetic unit.


Genetics ◽  
1983 ◽  
Vol 105 (2) ◽  
pp. 371-386
Author(s):  
Michael A Kotarski ◽  
Sally Pickert ◽  
Ross J MacIntyre

ABSTRACT The chromosomal region surrounding the structural gene for α-glycerophosphate dehydrogenase (αGpdh, 2-20.5) of Drosophila melanogaster has been studied in detail. Forty-three EMS-induced recessive lethal mutations and five previously identified visible mutations have been localized within the 25A-27D region of chromosome 2 by deficiency mapping and in some cases by a recombination analysis. The 43 lethal mutations specify 17 lethal loci. ?Gpdh has been localized to a single polytene chromosome band, 25F5, and there apparently are no lethals that map to the αGpdh locus.


Sign in / Sign up

Export Citation Format

Share Document