scholarly journals The PET54 gene of Saccharomyces cerevisiae: characterization of a nuclear gene encoding a mitochondrial translational activator and subcellular localization of its product.

Genetics ◽  
1989 ◽  
Vol 122 (2) ◽  
pp. 297-305 ◽  
Author(s):  
M C Costanzo ◽  
E C Seaver ◽  
T D Fox

Abstract The product of the nuclear Saccharomyces cerevisiae gene PET54 is specifically required, along with at least two other nuclear gene products, for translation of the mitochondrial mRNA encoding subunit III of cytochrome c oxidase (coxIII). We have genetically mapped PET54 (to the right arm of chromosome VII, 4.8 cM centromere-distal to SUF15), and have biochemically characterized the gene and its product. We determined the nucleotide sequence of a 1.6-kb DNA fragment carrying PET54 and identified the PET54 reading frame by determining the sequence of an ochre mutant allele as well as frameshift and frameshift-revertant alleles of the gene. The wild-type PET54 gene encodes a slightly basic 293-amino acid protein. PET54 is expressed from two mRNAs, both with unusual features: a major transcript with an extremely short 5'-untranslated leader, and a minor transcript with a relatively long 5'-leader carrying three short open reading frames. Antiserum raised against a trpE-PET54 fusion protein was used to probe subcellular fractions. These experiments showed that the PET54 protein is specifically associated with mitochondria, suggesting that it is likely to act directly in coxIII translation.

1999 ◽  
Vol 181 (18) ◽  
pp. 5876-5879 ◽  
Author(s):  
Deborah A. Hogan ◽  
Thomas A. Auchtung ◽  
Robert P. Hausinger

ABSTRACT The Saccharomyces cerevisiae open reading frame YLL057c is predicted to encode a gene product with 31.5% amino acid sequence identity to Escherichia coli taurine/α-ketoglutarate dioxygenase and 27% identity to Ralstonia eutropha TfdA, a herbicide-degrading enzyme. Purified recombinant yeast protein is shown to be an Fe(II)-dependent sulfonate/α-ketoglutarate dioxygenase. Although taurine is a poor substrate, a variety of other sulfonates are utilized, with the best natural substrates being isethionate and taurocholate. Disruption of the gene encoding this enzyme negatively affects the use of isethionate and taurine as sulfur sources byS. cerevisiae, providing strong evidence that YLL057c plays a role in sulfonate catabolism.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1707-1715 ◽  
Author(s):  
J L Patton-Vogt ◽  
S A Henry

Abstract Phosphatidylinositol catabolism in Saccharomyces cerevisiae cells cultured in media containing inositol results in the release of glycerophosphoinositol (GroPIns) into the medium. As the extracellular concentration of inositol decreases with growth, the released GroPIns is transported back into the cell. Exploiting the ability of the inositol auxotroph, ino1, to use exogenous GroPIns as an inositol source, we have isolated mutants (Git−) defective in the uptake and metabolism of GroPIns. One mutant was found to be affected in the gene encoding the transcription factor, SPT7. Mutants of the positive regulatory gene INO2, but not of its partner, INO4, also have the Git− phenotype. Another mutant was complemented by a single open reading frame (ORF) termed GIT1 (glycerophosphoinositol). This ORF consists of 1556 bp predicted to encode a polypeptide of 518 amino acids and 57.3 kD. The predicted Git1p has similarity to a variety of S. cerevisiae transporters, including a phosphate transporter (Pho84p), and both inositol transporters (Itr1p and Itr2p). Furthermore, Git1p contains a sugar transport motif and 12 potential membrane-spanning domains. Transport assays performed on a git1 mutant together with the above evidence indicate that the GIT1 gene encodes a permease involved in the uptake of GroPIns.


1985 ◽  
Vol 5 (11) ◽  
pp. 2887-2893
Author(s):  
M Neitz ◽  
J Carbon

A functional centromere located on a small DNA restriction fragment from Saccharomyces cerevisiae was identified as CEN14 by integrating centromere-adjacent DNA plus the URA3 gene by homologous recombination into the yeast genome and then by localizing the URA3 gene to chromosome XIV by standard tetrad analysis. DNA sequence analysis revealed that CEN14 possesses sequences (elements I, II, and III) that are characteristic of other yeast centromeres. Mitotic and meiotic analyses indicated that the CEN14 function resides on a 259-base-pair (bp) RsaI-EcoRV restriction fragment, containing sequences that extend only 27 bp to the right of the element I to III region. In conjunction with previous findings on CEN3 and CEN11, these results indicate that the specific DNA sequences required in cis for yeast centromere function are contained within a region about 150 bp in length.


Sign in / Sign up

Export Citation Format

Share Document