scholarly journals Homology requirements for unequal crossing over in humans.

Genetics ◽  
1991 ◽  
Vol 128 (1) ◽  
pp. 143-161 ◽  
Author(s):  
A B Metzenberg ◽  
G Wurzer ◽  
T H Huisman ◽  
O Smithies

Abstract To gain insight into mechanisms of unequal homologous recombination in vivo, genes generated by homologous unequal crossovers in the human beta-globin gene cluster were examined by nucleotide sequencing and hybridization experiments. The naturally occurring genes studied included one delta-beta Lepore-Baltimore fusion gene, one delta-beta Lepore-Hollandia fusion gene, 12 delta-beta Lepore-Boston genes, one A gamma-beta fusion Kenya gene, one A gamma-G gamma fusion (the central gene of a triplication) and one G gamma-A gamma fusion. A comparison of the nucleotide sequences of three Lepore-Boston genes indicates that they were derived from at least two independent homologous but unequal crossover events, although the crossovers occurred within the same 58-bp region. Nine additional Lepore-Boston genes from individuals of various ethnic origins were shown, by hybridization to specific oligonucleotide probes, to have been generated by a crossover in the same region as the sequenced genes. Evidence for gene conversion accompanying a homologous unequal crossover event was found in only one case (although some of the single nucleotide differences observed in other genes in this study may be related to the crossover events in ways that we do not presently understand). Thus, as judged by this limited sample, concurrent gene conversions are not commonly associated with homologous but unequal exchange in humans in vivo. Classification of the recombinant chromosomes by their polymorphic restriction sites in the beta-globin gene cluster indicated that the Lepore-Boston genes are found in at least six different haplotype backgrounds. Therefore the total number of independent examples in this study is at least 6, and at most 12. We have shown that in at least six cases of genes that have arisen by homologous but unequal crossing over in vivo, each event occurred in a relatively extensive region of uninterrupted identity between the parental genes. This preference cannot be explained by a mechanism whereby crossovers occur at random within misaligned related but not identical genes. In general, crossovers occur in regions that are among the largest available stretches of identity for a particular pair of mismatched genes. Our data are in agreement with those of other types of studies of homologous recombination, and support the idea that sequence identity, rather than general homology, is a critical factor in homologous recombination.

Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2455-2459
Author(s):  
AE Kulozik ◽  
A Bellan-Koch ◽  
E Kohne ◽  
E Kleihauer

The most common forms of hereditary persistence of fetal hemoglobin synthesis (HPFH) and delta beta zero-thalassemia result from simple deletions of the beta-globin gene cluster or from point mutations in the gamma-globin gene promoters. These naturally occurring mutants extend our understanding of globin gene regulation and hemoglobin switching. Furthermore, they provide the opportunity to test in vivo hypothetical switching models that are based on the experimental approach. We report here a family with delta beta zero-thalassemia from Turkey with a complex rearrangement of the beta-globin gene cluster that involves two deletions of 11.5 kb and 1.6 kb, and an inversion of 7.6 kb. The larger deletion removes both the delta-and the beta-globin genes with 3′ flanking sequences, whereas the smaller deletion affects DNA of unknown function. The inversion contains the entire L1 repeat 3′ of the beta-globin gene. There are structural motifs near the breakpoints (introduction of an “orphan” nucleotide, multiple direct and inverted repeats) suggesting a nonhomologous type of recombination event. The hematologic phenotype and the molecular structure of the rearranged beta-globin gene cluster are consistent with a competitive relationship between the fetal and the adult globin genes and/or with the translocation of enhancer sequences into the gamma-globin gene region.


Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2455-2459 ◽  
Author(s):  
AE Kulozik ◽  
A Bellan-Koch ◽  
E Kohne ◽  
E Kleihauer

Abstract The most common forms of hereditary persistence of fetal hemoglobin synthesis (HPFH) and delta beta zero-thalassemia result from simple deletions of the beta-globin gene cluster or from point mutations in the gamma-globin gene promoters. These naturally occurring mutants extend our understanding of globin gene regulation and hemoglobin switching. Furthermore, they provide the opportunity to test in vivo hypothetical switching models that are based on the experimental approach. We report here a family with delta beta zero-thalassemia from Turkey with a complex rearrangement of the beta-globin gene cluster that involves two deletions of 11.5 kb and 1.6 kb, and an inversion of 7.6 kb. The larger deletion removes both the delta-and the beta-globin genes with 3′ flanking sequences, whereas the smaller deletion affects DNA of unknown function. The inversion contains the entire L1 repeat 3′ of the beta-globin gene. There are structural motifs near the breakpoints (introduction of an “orphan” nucleotide, multiple direct and inverted repeats) suggesting a nonhomologous type of recombination event. The hematologic phenotype and the molecular structure of the rearranged beta-globin gene cluster are consistent with a competitive relationship between the fetal and the adult globin genes and/or with the translocation of enhancer sequences into the gamma-globin gene region.


1994 ◽  
Vol 44 (3) ◽  
pp. 142-149 ◽  
Author(s):  
João Farias Guerreiro ◽  
Mauro Silvério Figueiredo ◽  
Marco Antonio Zago

1996 ◽  
Vol 93 (2) ◽  
pp. 780-784 ◽  
Author(s):  
V. Muller ◽  
M. Takeya ◽  
S. Brendel ◽  
B. Wittig ◽  
A. Rich

Blood ◽  
1988 ◽  
Vol 71 (3) ◽  
pp. 766-770
Author(s):  
PT Curtin ◽  
YW Kan

We have previously described an English family with gamma delta beta- thalassemia in which a large deletion stops 25 kilobases (kb) upstream from the beta-globin gene locus, and yet the beta-globin gene is inactive in vivo. Affected family members had a beta-thalassemia minor phenotype with a normal hemoglobin A2 level. Gene mapping showed that these subjects were heterozygous for a chromosome bearing a large deletion that began in the G gamma-globin gene, extended through the epsilon-globin gene, and continued upstream for at least 75 kb. The A gamma-, delta-, and beta-globin gene loci on this chromosome were intact. To examine the possibility that an additional defect was present in the beta-globin gene, we cloned, sequenced, and examined the expression of the beta-globin gene from the affected chromosome. No mutation was found in the beta-globin gene sequence from 990 base-pairs 5′ to the cap site to 350 basepairs 3′ to the polyadenylation signal. The gene was subcloned into an expression vector and introduced into HeLa cells. Analysis of RNA derived from these cells, using a ribonuclease protection assay, revealed qualitatively and quantitatively normal transcription. Thus a structurally and functionally normal beta-globin gene is inactive in the presence of a large deletion more than 25 kb upstream. The loss of beta-globin gene function may be due to disturbance of chromatin conformation caused by the deletion or may be the result of loss of upstream sequences that are necessary for beta-globin gene expression in vivo.


1987 ◽  
Vol 7 (11) ◽  
pp. 4024-4029
Author(s):  
M Trudel ◽  
J Magram ◽  
L Bruckner ◽  
F Costantini

The human G gamma-globin and beta-globin genes are expressed in erythroid cells at different stages of human development, and previous studies have shown that the two cloned genes are also expressed in a differential stage-specific manner in transgenic mice. The G gamma-globin gene is expressed only in murine embryonic erythroid cells, while the beta-globin gene is active only at the fetal and adult stages. In this study, we analyzed transgenic mice carrying a series of hybrid genes in which different upstream, intragenic, or downstream sequences were contributed by the beta-globin or G gamma-globin gene. We found that hybrid 5'G gamma/3'beta globin genes containing G gamma-globin sequences upstream from the initiation codon were expressed in embryonic erythroid cells at levels similar to those of an intact G gamma-globin transgene. In contrast, beta-globin upstream sequences were insufficient for expression of 5'beta/3'G gamma hybrid globin genes or a beta-globin-metallothionein fusion gene in adult erythroid cells. However, beta-globin downstream sequences, including 212 base pairs of exon III and 1,900 base pairs of 3'-flanking DNA, were able to activate a 5'G gamma/3'beta hybrid globin gene in fetal and adult erythroid cells. These experiments suggest that positive regulatory elements upstream from the G gamma-globin and downstream from the beta-globin gene are involved in the differential expression of the two genes during development.


Blood ◽  
1984 ◽  
Vol 64 (5) ◽  
pp. 1053-1058 ◽  
Author(s):  
SH Boyer ◽  
GJ Dover ◽  
GR Serjeant ◽  
KD Smith ◽  
SE Antonarakis ◽  
...  

Abstract Levels of fetal hemoglobin (HbF) bearing reticulocytes (F reticulocytes) range from 2% to 50% in patients with sickle cell (SS) anemia. To learn whether any portion of such variation in F cell production is regulated by loci genetically separable from the beta- globin gene cluster, percentages of F reticulocytes were compared in 59 sib pairs composed solely of SS members, including 40 pairs from Jamaica and 19 from the United States. We reasoned that differences in F reticulocyte levels might arise (1) from any of several kinds of artifact, (2) via half-sib status, or (3) because one or more genes regulating F cell production segregate separately from beta S. We minimized the role of artifact by assay of fresh samples from 84 SS individuals, including both members of 38 sib pairs. In 78 of the 84 subjects, serial values for percent F reticulocytes fell within 99.9% confidence limits or were alike by t test (P greater than or equal to .05). This left 32 sib pairs for which F reticulocyte levels in each member were reproducible. When sib-sib comparisons were limited to these 32 pairs, percentages of F reticulocytes were grossly dissimilar within 12 Jamaican and 3 American sibships. Within them, the probability that sibs were alike was always less than or equal to .005 and usually less than or equal to 10(-4). We next minimized the contribution of half-sibs among Jamaicans by a combination of paternity testing and sib-sib comparison of beta-globin region DNA restriction fragment length polymorphisms, especially among discordant pairs. We thereafter concluded that at least seven to eight Jamaican pairs were composed of reproducibly discordant full sibs. There is thus little doubt that there are genes regulating between-patient differences in F cell production that are separate from the beta-globin gene cluster. Still unanswered is (1) whether or not these genes are actually linked to beta S, (2) why F reticulocyte levels in Americans tend to be lower than in Jamaicans, and (3) whether or not differences in F cell production among SS patients are regulated by several major loci or by only one.


Blood ◽  
1993 ◽  
Vol 81 (5) ◽  
pp. 1384-1392 ◽  
Author(s):  
I Plavec ◽  
T Papayannopoulou ◽  
C Maury ◽  
F Meyer

Abstract Retroviral-mediated gene transfer of human beta-globin provides a model system for the development of somatic gene therapy for hemoglobinopathies. Previous work has shown that mice receiving a transplant of bone marrow cells infected with a retroviral vector containing the human beta-globin gene can express human beta-globin specifically in erythroid cells; however, the level of expression of the transduced globin gene was low (1% to 2% per gene copy as compared with that of the endogenous mouse beta-globin gene). We report here the construction of a recombinant retrovirus vector encoding a human beta- globin gene fused to the 4 major regulatory elements of the human beta- globin locus control region (LCR). The LCR cassette increases the level of expression of the globin gene in murine erythroleukemia cells by 10- fold. To study the level of expression in vivo, mouse bone marrow cells were infected with virus-producing cells and the transduced cells were injected into lethally irradiated recipients. In the majority of provirus-containing mice (up to 75%), expression of human beta-globin in peripheral blood was detected at least 3 to 6 months after transplantation. Twelve animals representative of the level of expression of the transduced gene in blood (0.04% to 3.2% of the endogenous mouse beta-globin RNA) were selected for further analysis. A range of 0.4% to 12% of circulating erythrocytes stained positive for human beta-globin protein. Based on these values, the level of expression of the transduced gene per cell was estimated to be 10% to 39% of the endogenous mouse beta-globin gene. These data demonstrate that fusion of the LCR to the beta-globin gene in a retroviral vector increases the level of beta-globin expression in murine erythroleukemia cells and suggest that high-level expression can be obtained in erythroid cells in vivo after transduction into hematopoietic stem cells.


Author(s):  
Vanessa S. Mattevi ◽  
Marilu Fiegenbaum ◽  
Francisco M. Salzano ◽  
Kenneth M. Weiss ◽  
John Moore ◽  
...  

Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 547-550 ◽  
Author(s):  
Y Takihara ◽  
T Nakamura ◽  
H Yamada ◽  
Y Takagi ◽  
Y Fukumaki

Abstract A single base substitution (A-G) at position -31 within the highly conserved proximal promoter element, the TATA box, was identified in the beta-globin gene cloned from a Japanese woman with beta +- thalassemia. It appears that she is homozygous for this specific allele, as determined by haplotype analysis using seven different polymorphic sites in the beta-globin gene cluster. Transient expression of the mutant gene in COS cells revealed a 45% reduction in beta-globin RNA production, relative to normal. These results establish the functional significance of the second base of the TATA box for in vivo transcription of the human beta-globin gene.


Sign in / Sign up

Export Citation Format

Share Document