scholarly journals CROSSING OVER IN A REVERSED ACROCENTRIC COMPOUND X CHROMOSOME OF DROSOPHILA MELANOGASTER

Genetics ◽  
1967 ◽  
Vol 55 (4) ◽  
pp. 673-679
Author(s):  
Richard C Gethmann
2008 ◽  
Vol 90 (3) ◽  
pp. 253-258 ◽  
Author(s):  
ERIC W. CROSS ◽  
MICHAEL J. SIMMONS

SummaryMutations in the RNA interference (RNAi) genes aubergine (aub), homeless and piwi were tested for effects on the frequency, distribution and coincidence of meiotic crossovers in the long arm of the X chromosome. Some increases in crossover frequency were seen in these tests, but they may have been due to a maternal effect of the balancer chromosomes that were used to maintain the RNAi mutations in stocks rather than to the RNAi mutations themselves. These same balancers produced strong zygotic interchromosomal effects when tested separately. Mutations in aub and piwi did not affect the frequency of crossing over in the centric heterochromatin of chromosome II; nor did a balancer chromosome III.


Genetics ◽  
1980 ◽  
Vol 96 (2) ◽  
pp. 455-470
Author(s):  
Hideh Harger ◽  
David G Holm

ABSTRACT In females of Drosophila melanogaster, compound autosomes enter the repulsion phase of meiosis uncommitted to a particular segregation pattern because their centromeres are not restricted to a bivalent pairing complex as a consequence of crossing over. Their distribution at anaphase, therefore, is determined by some meiotic property other than exchange pairing, a property that for many years has been associated with the concept of nonhomologous pairing. In the absence of heterologous rearrangements or a free Y chromosome, C(3L) and C(3R) are usually recovered in separate gametes, that is as products of meiotic segregation. Nevertheless, there is a regular, albeit infrequent, recovery of reciprocal meiotic products (the nonsegregational products) that are disomic and nullosomic for compound thirds. The frequency of these exceptions, which is normally between 0.5 and 5.0%, differs for the various strains examined, but remains constant for any given strain. Since previous studies have not uncovered a cause for this base level of nonsegregation, it has been referred to as the spontaneous frequency. In this study, crosses between males and females whose X chromosomes, as well as compound autosomes, are differentially marked reveal a highly significant positive correlation between the frequency of compound-autosome nonsegregation and the frequency of X-chromosome nondisjunction. However, an inverse correlation is found when the frequency of nondisjunction is related to the frequency of crossing over in the proximal region of the X chromosome. These findings have been examined with reference to the distributive pairing and the chromocentral models and interpreted as demonstrating (1) that nonsegregational meiotic events arise primarily as a result of nonhomologous interactions, (2) that forces responsible for the segregation of nonhomologous chromosomes are properties of the chromocentral region, and (3) that these forces come into expression after the exchange processes are complete.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1289-1305 ◽  
Author(s):  
Peter Andolfatto ◽  
Jeffrey D Wall

Abstract Previous multilocus surveys of nucleotide polymorphism have documented a genome-wide excess of intralocus linkage disequilibrium (LD) in Drosophila melanogaster and D. simulans relative to expectations based on estimated mutation and recombination rates and observed levels of diversity. These studies examined patterns of variation from predominantly non-African populations that are thought to have recently expanded their ranges from central Africa. Here, we analyze polymorphism data from a Zimbabwean population of D. melanogaster, which is likely to be closer to the standard population model assumptions of a large population with constant size. Unlike previous studies, we find that levels of LD are roughly compatible with expectations based on estimated rates of crossing over. Further, a detailed examination of genes in different recombination environments suggests that markers near the telomere of the X chromosome show considerably less linkage disequilibrium than predicted by rates of crossing over, suggesting appreciable levels of exchange due to gene conversion. Assuming that these populations are near mutation-drift equilibrium, our results are most consistent with a model that posits heterogeneity in levels of exchange due to gene conversion across the X chromosome, with gene conversion being a minor determinant of LD levels in regions of high crossing over. Alternatively, if levels of exchange due to gene conversion are not negligible in regions of high crossing over, our results suggest a marked departure from mutation-drift equilibrium (i.e., toward an excess of LD) in this Zimbabwean population. Our results also have implications for the dynamics of weakly selected mutations in regions of reduced crossing over.


Genetics ◽  
1984 ◽  
Vol 106 (1) ◽  
pp. 45-71 ◽  
Author(s):  
Paul Szauter

ABSTRACT The frequency of crossing over per unit of physical distance varies systematically along the chromosomes of Drosophila melanogaster. The regional distribution of crossovers in a series of X chromosomes of the same genetic constitution, but having different sequences, was compared in the presence and absence of normal genetically mediated regional constraints on exchange. Recombination was examined in Drosophila melanogaster females homozygous for either normal sequence X chromosomes or any of a series of X chromosome inversions. Autosomally, these females were either (1) wild type, (2) homozygous for one of several recombination-defective meiotic mutations that attenuate the normal regional constraints on exchange or (3) heterozygous for the multiply inverted chromosome TM2. The results show that the centromere, the telomeres, the heterochromatin and the euchromatic-heterochromatic junction do not serve as elements that respond to genic determinants of the regional distribution of exchanges. Instead, the results suggest that there are several elements sparsely distributed in the X chromosome euchromatin. Together with the controlling system affected by recombination-defective meiotic mutations, these elements specify the regional distribution of exchanges. The results also demonstrate that the alteration in the distribution of crossovers caused by inversion heterozygosity (the interchromosomal effect) results from the response of a normal controlling system to an overall increase in the frequency of crossing over, rather than from a disruption of the system of regional constraints on exchange that is disrupted by meiotic mutations. The mechanisms by which regional constraints on exchange might be established are discussed, as is the possible evolutionary significance of this system.


Genetics ◽  
1975 ◽  
Vol 79 (2) ◽  
pp. 283-294
Author(s):  
Eliezer Lifschytz

ABSTRACT The effect of heat on two small adjacent segments at the base of the X chromosome was examined. Recombination in the two segments delimited by recessive lethals was measured after treatment with 30° and 34°.Both segments were sensitive at 30°, while only the proximal one responded to 34° treatment. When the same segments were studied in structural heterozygotes (for deletions) the relative increase in recombination was greater, suggesting that heat exerts its effect on the "pairing" rather than the "exchange" components of crossing over. The effect of c (3) G/+ on the same segments in both homozygous and heterozygous structurals was studied. The results indicate that this meiotic mutant mediates its effect on a step different than that affected by heat.


1919 ◽  
Vol 1 (6) ◽  
pp. 645-656 ◽  
Author(s):  
Calvin B. Bridges

In May, 1916, a culture of Drosophila melanogaster showed that a new sex-linked lethal had arisen. The linkage relations indicated that the position of the lethal was in the neighborhood of the sex-linked recessive "vermilion," whose locus in the X chromosome is at 33.0. When females heterozygous for the lethal were outcrossed to vermilion males, all the daughters that received the lethal-bearing chromosome showed vermilion eye-color, though, from the pedigree, vermilion was known to be absent from the ancestry of the mother. The lethal action and the unexpected appearance of vermilion both suggested that this was another instance of the phenomenon called "deficiency;" that is, the loss or "inactivation" of the genes of a section of the X chromosome. The lethal action would then be due to the deficient region including one or more genes necessary for the life of the individual. The appearance of vermilion in females carrying only one vermilion gene would be explainable on the ground that the deficient-bearing females are virtually haploid for the region including the vermilion locus. Linkage tests showed that the amount of crossing over in the neighborhood of the deficiency was cut down by about five units. Part of this may be attributed to the actual length of the "deficient" region, within which it is probable that no crossing over occurs, and part (probably most) to an alteration in the synaptic relations in the regions immediately adjacent. In more remote regions there was no disturbance or perhaps a slight rise in the frequency of crossing over. Both the local fall and the possible rise in more distant regions would seem to argue that a "pucker" at synapsis had been caused by an actual shortening of the deficient chromosome. That the deficient region extends to the left of the locus of vermilion was indicated by a test in which it was observed that the presence of an extra piece of chromosome including the loci for vermilion and sable ("vermilion-sable duplication") did not neutralize the lethal action of the deficiency. Haploid tests with the other recessive mutations in the neighborhood of vermilion showed that the deficiency was not extensive enough to include their loci. Cytological preparations were made but were unsatisfactory. The stock was finally lost, apparently as the result of injurious action upon viability, fertility, and productivity by the deficiency.


Sign in / Sign up

Export Citation Format

Share Document