De-noising Receiver function data using the unsupervised deep learning approach

Author(s):  
Bijayananda Dalai ◽  
Prakash Kumar ◽  
Uppala Srinu ◽  
Mrinal K Sen

Summary The converted wave data (P-to-s or S-to-p), traditionally termed as receiver functions, are often contaminated with noise of different origin that may lead to the erroneous identification of phases and thus influence the interpretations. Here we utilize an unsupervised deep learning approach called Patchunet to de-noise the converted wave data. We divide the input data into several patches, which are input to the encoder and decoder network to extract some meaningful features. The method de-noises an image patch-by-patch and utilizes the redundant information on similar patches to obtain the final de-noised results. The method is first tested on a suite of synthetic data contaminated with various amount of Gaussian and realistic noise and then on the observed data from three permanent seismic stations: HYB (Hyderabad, India), LBTB (Lobatse, Botswana, South Africa), COR (Corvallis, Oregon, USA). The method works very well even when the signal-to-noise ratio is poor or with the presence of spike noise and deconvolution artifacts. The field data demonstrate the effectiveness of the method for attenuating the random noise especially for the mantle phases, which show significant improvements over conventional receiver function based images.

2021 ◽  
Vol 210 ◽  
pp. 106371
Author(s):  
Elisa Moya-Sáez ◽  
Óscar Peña-Nogales ◽  
Rodrigo de Luis-García ◽  
Carlos Alberola-López

2021 ◽  
Vol 13 (10) ◽  
pp. 265
Author(s):  
Jie Chen ◽  
Bing Han ◽  
Xufeng Ma ◽  
Jian Zhang

Underwater target recognition is an important supporting technology for the development of marine resources, which is mainly limited by the purity of feature extraction and the universality of recognition schemes. The low-frequency analysis and recording (LOFAR) spectrum is one of the key features of the underwater target, which can be used for feature extraction. However, the complex underwater environment noise and the extremely low signal-to-noise ratio of the target signal lead to breakpoints in the LOFAR spectrum, which seriously hinders the underwater target recognition. To overcome this issue and to further improve the recognition performance, we adopted a deep-learning approach for underwater target recognition, and a novel LOFAR spectrum enhancement (LSE)-based underwater target-recognition scheme was proposed, which consists of preprocessing, offline training, and online testing. In preprocessing, we specifically design a LOFAR spectrum enhancement based on multi-step decision algorithm to recover the breakpoints in LOFAR spectrum. In offline training, the enhanced LOFAR spectrum is adopted as the input of convolutional neural network (CNN) and a LOFAR-based CNN (LOFAR-CNN) for online recognition is developed. Taking advantage of the powerful capability of CNN in feature extraction, the recognition accuracy can be further improved by the proposed LOFAR-CNN. Finally, extensive simulation results demonstrate that the LOFAR-CNN network can achieve a recognition accuracy of 95.22%, which outperforms the state-of-the-art methods.


2020 ◽  
Vol 34 (07) ◽  
pp. 11029-11036
Author(s):  
Jiabo Huang ◽  
Qi Dong ◽  
Shaogang Gong ◽  
Xiatian Zhu

Convolutional neural networks (CNNs) have achieved unprecedented success in a variety of computer vision tasks. However, they usually rely on supervised model learning with the need for massive labelled training data, limiting dramatically their usability and deployability in real-world scenarios without any labelling budget. In this work, we introduce a general-purpose unsupervised deep learning approach to deriving discriminative feature representations. It is based on self-discovering semantically consistent groups of unlabelled training samples with the same class concepts through a progressive affinity diffusion process. Extensive experiments on object image classification and clustering show the performance superiority of the proposed method over the state-of-the-art unsupervised learning models using six common image recognition benchmarks including MNIST, SVHN, STL10, CIFAR10, CIFAR100 and ImageNet.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3549
Author(s):  
Giovanni Diraco ◽  
Alessandro Leone ◽  
Pietro Siciliano

In the smart environments we live today, a great variety of heterogeneous sensors are being increasingly deployed with the aim of providing more and more value-added services. This huge availability of sensor data, together with emerging Artificial Intelligence (AI) methods for Big Data analytics, can yield a wide array of actionable insights to help older adults continue to live independently with minimal support of caregivers. In this regard, there is a growing demand for technological solutions able to monitor human activities and vital signs in order to early detect abnormal conditions, avoiding the caregivers’ daily check of the care recipient. The aim of this study is to compare state-of-the-art machine and deep learning techniques suitable for detecting early changes in human behavior. At this purpose, specific synthetic data are generated, including activities of daily living, home locations in which such activities take place, and vital signs. The achieved results demonstrate the superiority of unsupervised deep-learning techniques over traditional supervised/semi-supervised ones in terms of detection accuracy and lead-time of prediction.


Author(s):  
Dawei Liu ◽  
Zheyuan Deng ◽  
Cheng Wang ◽  
Xiaokai Wang ◽  
Wenchao Chen

Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. U109-U119
Author(s):  
Pengyu Yuan ◽  
Shirui Wang ◽  
Wenyi Hu ◽  
Xuqing Wu ◽  
Jiefu Chen ◽  
...  

A deep-learning-based workflow is proposed in this paper to solve the first-arrival picking problem for near-surface velocity model building. Traditional methods, such as the short-term average/long-term average method, perform poorly when the signal-to-noise ratio is low or near-surface geologic structures are complex. This challenging task is formulated as a segmentation problem accompanied by a novel postprocessing approach to identify pickings along the segmentation boundary. The workflow includes three parts: a deep U-net for segmentation, a recurrent neural network (RNN) for picking, and a weight adaptation approach to be generalized for new data sets. In particular, we have evaluated the importance of selecting a proper loss function for training the network. Instead of taking an end-to-end approach to solve the picking problem, we emphasize the performance gain obtained by using an RNN to optimize the picking. Finally, we adopt a simple transfer learning scheme and test its robustness via a weight adaptation approach to maintain the picking performance on new data sets. Our tests on synthetic data sets reveal the advantage of our workflow compared with existing deep-learning methods that focus only on segmentation performance. Our tests on field data sets illustrate that a good postprocessing picking step is essential for correcting the segmentation errors and that the overall workflow is efficient in minimizing human interventions for the first-arrival picking task.


Sign in / Sign up

Export Citation Format

Share Document