scholarly journals Uppermost mantle (Pn) velocity model for the Afar region, Ethiopia: an insight into rifting processes

2013 ◽  
Vol 193 (1) ◽  
pp. 321-328 ◽  
Author(s):  
A. L. Stork ◽  
G. W. Stuart ◽  
C. M. Henderson ◽  
D. Keir ◽  
J. O. S. Hammond
2021 ◽  
Author(s):  
Anke Dannowski ◽  
Heidrun Kopp ◽  
Ingo Grevemeyer ◽  
Grazia Caielli ◽  
Roberto de Franco ◽  
...  

<p>The Ligurian Basin is located north-west of Corsica at the transition from the western Alpine orogen to the Apennine system. The Back-arc basin was generated by the southeast retreat of the Apennines-Calabrian subduction zone. The opening took place from late Oligocene to Miocene. While the extension led to extreme continental thinning little is known about the style of back-arc rifting. Today, seismicity indicates the closure of this back-arc basin. In the basin, earthquake clusters occur in the lower crust and uppermost mantle and are related to re-activated, inverted, normal faults created during rifting.</p><p>To shed light on the present day crustal and lithospheric architecture of the Ligurian Basin, active seismic data have been recorded on short period ocean bottom seismometers in the framework of SPP2017 4D-MB, the German component of AlpArray. An amphibious refraction seismic profile was shot across the Ligurian Basin in an E-W direction from the Gulf of Lion to Corsica. The profile comprises 35 OBS and three land stations at Corsica to give a complete image of the continental thinning including the necking zone.</p><p>The majority of the refraction seismic data show mantle phases with offsets up to 70 km. The arrivals of seismic phases were picked and used to generate a 2-D P-wave velocity model. The results show a crust-mantle boundary in the central basin at ~12 km depth below sea surface. The P-wave velocities in the crust reach 6.6 km/s at the base. The uppermost mantle shows velocities >7.8 km/s. The crust-mantle boundary becomes shallower from ~18 km to ~12 km depth within 30 km from Corsica towards the basin centre. The velocity model does not reveal an axial valley as expected for oceanic spreading. Further, it is difficult to interpret the seismic data whether the continental lithosphere was thinned until the mantle was exposed to the seafloor. However, an extremely thinned continental crust indicates a long lasting rifting process that possibly did not initiate oceanic spreading before the opening of the Ligurian Basin stopped. The distribution of earthquakes and their fault plane solutions, projected along our seismic velocity model, is in-line with the counter-clockwise opening of the Ligurian Basin.</p>


1984 ◽  
Vol 74 (4) ◽  
pp. 1263-1274
Author(s):  
Lawrence H. Jaksha ◽  
David H. Evans

Abstract A velocity model of the crust in northwestern New Mexico has been constructed from an interpretation of direct, refracted, and reflected seismic waves. The model suggests a sedimentary section about 3 km thick with an average P-wave velocity of 3.6 km/sec. The crystalline upper crust is 28 km thick and has a P-wave velocity of 6.1 km/sec. The lower crust below the Conrad discontinuity has an average P-wave velocity of about 7.0 km/sec and a thickness near 17 km. Some evidence suggests that velocity in both the upper and lower crust increases with depth. The P-wave velocity in the uppermost mantle is 7.95 ± 0.15 km/sec. The total crustal thickness near Farmington, New Mexico, is about 48 km (datum = 1.6 km above sea level), and there is evidence for crustal thinning to the southeast.


Lithos ◽  
2011 ◽  
Vol 124 (3-4) ◽  
pp. 215-226 ◽  
Author(s):  
Tomoaki Morishita ◽  
Yildirim Dilek ◽  
Minella Shallo ◽  
Akihiro Tamura ◽  
Shoji Arai

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. C61-C73 ◽  
Author(s):  
Alexey Stovas

Geometric spreading is an important factor that needs to be taken into account in the analysis of seismic amplitudes. In particular, when using any modification of amplitude variation with offset or amplitude versus azimuth methods, the effect of geometric spreading is crucial to isolate the effect of reflection from a particular interface. The relative geometric spreading controls the amplitude of seismic waves passing through a velocity model. In the case of an anisotropic medium, geometric spreading becomes very complicated. Usually, geometric spreading is computed from ray tracing. I have derived simple analytical formulas to compute the relative geometric spreading of P-waves in a stack of acoustic orthorhombic layers with azimuthal variations in symmetry planes. I also analyzed the kinematic properties of the derived equations and performed sensitivity analysis with respect to three anelliptic parameters. A simple and accurate approximation for the relative geometric spreading is derived and tested against well-known approximation. My approximations give insight into the role that anelliptic parameters play into the azimuthal distribution of amplitudes and can be used for amplitude analysis in multilayered orthorhombic models.


2021 ◽  
Author(s):  
◽  
Anya Mira Seward

<p>A new method of modelling Pn-wave speeds is created. The method allows the predominant wavelength features of P-wave speeds in the uppermost mantle to be modelled, as well as estimating values of mantle anisotropy and irregularities in the crust beneath stations, using least-square collocation. A combination of National Network seismometers, local volcanic seismic monitoring networks and temporary deployments are used to collect arrival times from local events, during the period of 1990-2006. The dataset consists of approximately 11200 Pn observations from 3000 local earthquakes at 91 seismograph sites. The resulting model shows distinct variations in uppermost mantle Pn velocities. Velocities of less than 7.5 km/s are found beneath the back-arc extension region of the Central Volcanic Region, and under the Taranaki Volcanic Region, indicating the presence of water and partial melt. The region to the east shows extremely high velocities of 8.3-8.5 km/s, where the P-waves are traveling within the subducting Pacific slab. Slightly lower than normal mantle velocities of 7.8-8.1 km/s are found in the western North Island, suggesting a soft mantle. Pn anisotropy estimates throughout the North Island show predominately trench parallel fast directions, ceasing to nulls in the west. Anisotropy measurements indicate the strain history of the mantle. For the observed upper mantle Pn velocity of 7.3 km/s is one of the lowest seen in the world. Ray-tracing modelling indicate that this region extends to depths of at least 65 km, suggesting an area of elevated heat (700 - 1100 degrees C) at Moho depth. Elevated temperatures can be caused by the presence partial melt (0.4 % to 2.1 % depending on the amount of water present). Beneath the western North Island, the observed slower than normal mantle velocities, indicate a material of lowered shear modulus, susceptible to strain deformation. However, anisotropy estimations in this region, show no significant anisotropy, suggesting that this is a region of young mantle that hasn't had time to take up the signature of deformation. These observations can be explained by a detachment of the mantle lithosphere through a Rayleigh-Taylor instability more than 5 Ma.</p>


2020 ◽  
Author(s):  
Senad Subašić ◽  
Meysam Rezaeifar ◽  
Nicola Piana Agostinetti ◽  
Sergei Lebedev ◽  
Christopher Bean

&lt;p&gt;We present a 3D P-wave velocity model of the crust and uppermost mantle below Ireland. In the absence of local earthquakes, we used quarry and mining blasts recorded on permanent stations in the Irish National Seismic Network (INSN) and during various temporary deployments. We compiled a database of 1,100 events and around 20,000 P-wave arrivals, with each event associated with a known quarry. The source location uncertainty is therefore minimal. Both source and receiver locations are fixed in time and we used repeating events to estimate the travel time uncertainty for each source-receiver combination. We created a starting 1D velocity model from previously available data, and then used VELEST to calculate a preliminary minimum 1D velocity model. The 1D velocity model enabled us to remove outliers from the data set, and to calculate the final minimum 1D model used as the initial model in the 3D tomographic inversion. The resulting 3D P-wave velocity model will shed new light on the 3D crustal structure of Ireland.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document