scholarly journals Bayesian inversion for finite fault earthquake source models – II: the 2011 great Tohoku-oki, Japan earthquake

2014 ◽  
Vol 198 (2) ◽  
pp. 922-940 ◽  
Author(s):  
S. E. Minson ◽  
M. Simons ◽  
J. L. Beck ◽  
F. Ortega ◽  
J. Jiang ◽  
...  
2013 ◽  
Vol 194 (3) ◽  
pp. 1701-1726 ◽  
Author(s):  
S. E. Minson ◽  
M. Simons ◽  
J. L. Beck

2021 ◽  
Author(s):  
Kirill A. Sementsov ◽  
Sergey V. Kolesov ◽  
Anna V. Bolshakova ◽  
Mikhail A. Nosov

<p>Information on the earthquake source mechanism (Centroid Moment Tensor) becomes publicly available in a few minutes after the earthquake (for example, https://earthquake.usgs.gov/earthquakes or http://geofon.gfz-potsdam.de/eqinfo). Using this information, we can calculate the ocean bottom displacement in the earthquake area [Leonard, 2010; Okada, 1985] and then use this displacement as an input data for hydrodynamic simulation of the tsunami waves. Let us call this type of input data - Type 1. Somewhat later (and sometimes much later), than CMT, more detailed information on the rupture fault structure (Finite Fault Model) becomes available. According to Finite Fault Model, the rupture fault in the earthquake source consists of a certain number of segments characterized by their dip and strike angles. Each segment consists of a finite number of rectangular subfaults, for each of which a displacement vector, an activation time and a rise time are specified. By applying Okada's formulas to each subfault and using the principle of superposition, we can calculate the ocean bottom displacement in the earthquake area and also use it as an input data for tsunami simulations. Let us call this type of input data - Type 2. However, based on the Finite Fault Model, we are able to create a third type of input data (Type 3). To do this, it is necessary to take into account the displacement start time (subfault activation time) and the displacement duration (subfault rise time) of each subfault and consider the dynamics of the rupture process. In this case, we will be able to reconstruct not only the coseismic bottom displacement in the earthquake source (Type 2), but also describe the dynamics of the coseismic bottom displacement formation in the tsunami source (Type 3).</p><p> </p><p>This paper compares the tsunami simulation results performed with the of different types of input data (Type 1, Type 2 and Type 3). We performed calculations for a number of large earthquakes at the beginning of the 21st century. We took all the earthquake source information from the USGS catalog (https://earthquake.usgs.gov/earthquakes). The bottom deformations of all three types were calculated using the ffaultdisp code (http://ocean.phys.msu.ru/projects/ffaultdisp/). Tsunami modeling was carried out using a combined 2D / 3D CPTM model [Nosov, Kolesov, 2019; Sementsov et al., 2019]. The simulation results are compared with each other as well as with the DART ocean bottom observatories records.</p><p> </p><p>The study was supported by Russian Foundation for Basic Research (projects 20-35-70038, 19-05-00351, 20-07-01098).</p><p> </p>


2016 ◽  
Vol 87 (6) ◽  
pp. 1240-1253 ◽  
Author(s):  
Marco Pagani ◽  
Ken Xiansheng Hao ◽  
Hiroyuki Fujiwara ◽  
Matthew Gerstenberger ◽  
Kuo‐Fong Ma

2017 ◽  
Vol 107 (3) ◽  
pp. 1526-1544
Author(s):  
Brandon S. Clayton ◽  
Stephen H. Hartzell ◽  
Morgan P. Moschetti ◽  
Sarah E. Minson

2020 ◽  
Author(s):  
Seda Yolsal-Çevikbilen ◽  
Tuncay Taymaz

<p>Large and destructive earthquakes (M<sub>w</sub>≥ 7.5) occur worldwide particularly along the major subduction zones causing extensive damage and loss of life in the hinterland of epicentral region. Source models and rupture characteristics of these earthquakes (i.e. faulting geometry, focal depth, non-uniform finite-fault slip distributions) can be precisely determined by using seismological data and multidisciplinary earth-science observations. It is also known that earthquake source parameters play key roles in the modelling of secondary events such as earthquake-induced tsunamis. There are many studies emphasizing the importance of using heterogonous slip distribution models of earthquakes in mathematical tsunami simulations to predict synthetic tsunami waves more consistent with the observed ones. In this study, we obtained double-couple source mechanisms and slip distribution models of complex large earthquakes (M<sub>w</sub>≥ 7.5) lately occurred at different parts of the Earth. For this purpose, we used point-source teleseismic P- and SH- body waveform inversion and kinematic slip distribution inversion techniques. Besides, azimuthal distributions of P- wave first motion polarities, which are recorded by near-field and regional seismic stations, are checked to approve obtained minimum misfit source mechanism parameters of earthquakes. We essentially observed that tsunamigenic earthquakes occurred at shallow focal depths (h ≤ 70 km) with dip-slip source mechanisms and rather complex slip distributions along the fault planes. However, in some cases, tsunami waves may be unexpectedly triggered due to the secondary effects of large strike-slip earthquakes (e.g., September 28, 2018 Palu, Indonesia - M<sub>w</sub>7.5). Here, we discuss our inversion results, which reveal the significant contributions of earthquake source studies on resolving the relationships between the faulting geometry, rupture characteristics and tsunami generation. Furthermore, the necessity of high-resolution bathymetry data in numerical tsunami simulations is highlighted for the modelling of tsunami waves, in particular, recorded at the near-field tide-gauge stations. This study is partially supported by the Turkish Academy of Sciences (TÜBA) through GEBIP program.</p>


Sign in / Sign up

Export Citation Format

Share Document