earth structure
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 59)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Sven Schippkus ◽  
Celine Hadziioannou

Matched Field Processing (MFP) is a technique to locate the source of a recorded wave field. It is the generalization of beamforming, allowing for curved wavefronts. In the standard approach to MFP, simple analytical Green's functions are used as synthetic wave fields that the recorded wave fields are matched against. We introduce an advancement of MFP by utilizing Green's functions computed numerically for real Earth structure as synthetic wave fields. This allows in principle to incorporate the full complexity of elastic wave propagation, and through that provide more precise estimates of the recorded wave field's origin. This approach also further emphasizes the deep connection between MFP and the recently introduced interferometry-based source localisation strategy for the ambient seismic field. We explore this connection further by demonstrating that both approaches are based on the same idea: both are measuring the (mis-)match of correlation wave fields. To demonstrate the applicability and potential of our approach, we present two real data examples, one for an earthquake in Southern California, and one for secondary microseism activity in the Northeastern Atlantic and Mediterranean Sea. Tutorial code is provided to make MFP more approachable for the broader seismological community.


2021 ◽  
Vol 273 ◽  
pp. 107256
Author(s):  
Evelyn M. Powell ◽  
Linda Pan ◽  
Mark J. Hoggard ◽  
Konstantin Latychev ◽  
Natalya Gomez ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3410
Author(s):  
Sung-Sik Park ◽  
Jung-Shin Lee ◽  
Keun-Byoung Yoon ◽  
Seung-Wook Woo ◽  
Dong-Eun Lee

The use of nontraditional soil stabilizers increases. Various new soil binding agents are under study to augment renewability and sustainability of an earth structure. However, despite increasing interest involved in red clay, there is minimal research investigating the stabilizing red clay with polymer. This paper presents the findings obtained by applying the acrylic polymer and epoxy emulsion as binding agent for red clay and that for sand. The epoxy–hardener ratio, amount of epoxy emulsion, and amount of polymer aqueous solution were manipulated to quantify their effects on red clay and sand, respectively. After compacting a pair of cylindrical samples of which diameter and height are 5 cm and 10 cm, respectively, it is cured for 3 and 7 days in a controlled condition. Each pair is produced to represent the engineering performance at each data point in the solution space. An optimal composition of the binding agents for red clay and that for sand mixture are identified by experimenting every data point. In addition, given lime into each sample, the maximum unconfined compressive strength (UCS) endured by red clay sample and that by sand sample are 2243 and 1493 kPa, respectively. The UCS obtained by the sample mixed with clay and sand reaches 2671 kPa after seven days of curing. It confirms that the addition of lime remarkably improves the UCS. When the clay–sand mixture, of which the ratio is 70:30, includes 5% lime, the UCS of the mixture outperforms. Indeed, these findings, i.e., the optimal proportion of components, may contribute to the increase of initial and long-term strength of an earth structure, hence improving the renewability and sustainability of the earth construction method.


2021 ◽  
Author(s):  
Jeannette Xiu Wen Wan ◽  
Natalya Gomez ◽  
Konstantin Latychev ◽  
Holly Kyeore Han

Abstract. Accurate glacial isostatic adjustment (GIA) modeling in the cryosphere is required for interpreting satellite, geophysical and geological records and to assess the feedbacks of Earth deformation and sea level change on marine ice-sheet grounding lines. Assessing GIA in areas of active ice loss in West Antarctica is particularly challenging because the ice is underlain by laterally varying mantle viscosities that are up to several orders of magnitude lower than the global average, leading to a faster and more localized response of the solid Earth to ongoing and future ice sheet retreat and necessitating GIA models that incorporate 3-D viscoelastic Earth structure. Improvements to GIA models allow for computation of the viscoelastic response of the Earth to surface ice loading at sub-kilometre resolution and ice-sheet models and observational products now provide the inputs to GIA models at comparably unprecedented detail. However, the resolution required to capture GIA in models remains poorly understood, and high-resolution calculations come at heavy computational expense. We adopt a 3-D GIA model with a range of Earth structure models based on recent seismic tomography and geodetic data to perform a comprehensive analysis of the influence of grid resolution on predictions of GIA in the Amundsen Sea Embayment (ASE) in West Antarctica. Through idealized sensitivity testing down to sub-kilometre resolution with spatially isolated ice loading changes, we find that a grid resolution of ~3 times the radius of the load is required to accurately capture the elastic response of the Earth. However, when we consider more realistic, spatially coherent ice loss scenarios based on modern observational records and future ice sheet model projections and adopt a viscoelastic Earth, we find that errors of less than 5 % along the grounding line can be achieved with a 7.5 km grid, and less than 2 % with a 3.75 km grid, even when the input ice model is on a 1 km grid. Furthermore, we show that low mantle viscosities beneath the ASE lead to viscous deformation that contributes to the instrumental record on decadal timescales and equals or dominates over elastic effects by the end of the 21st century. Our findings suggest that for the range of resolutions of 1.9–15 km that we considered, the error due to adopting a coarser grid in this region is negligible compared to the effect of neglecting viscous effects and the uncertainty in the adopted mantle viscosity structure.


2021 ◽  
pp. 1039-1042
Author(s):  
T. Matsui ◽  
Y. Nabeshima ◽  
S.G. Zhou ◽  
N. Ogawa

2021 ◽  
Author(s):  
Jacqueline Austermann ◽  
Mark Hoggard ◽  
Konstantin Latychev ◽  
Fred Richards ◽  
Jerry Mitrovica

It is generally agreed that the Last Interglacial (LIG; ~130-115ka) was a time when global average temperatures and global mean sea level were higher than they are today. However, the exact timing, magnitude, and spatial pattern of ice melt is much debated. One difficulty in extracting past global mean sea level from local observations is that their elevations need to be corrected for glacial isostatic adjustment (GIA), which requires knowledge of Earth’s internal viscoelastic structure. While this structure is generally assumed to be radially symmetric, evidence from seismology, geodynamics, and mineral physics indicates that large lateral variations in viscosity exist within the mantle. In this study, we construct a new model of Earth’s internal structure by converting shear wave speed into viscosity using parameterisations from mineral physics experiments and geodynamical constraints on Earth’s thermal structure. We use this 3D Earth structure, which includes both variations in lithospheric thickness and lateral variations in viscosity, to calculate the first 3D GIA prediction for LIG sea level. We find that the difference between predictions with and without lateral Earth structure can be meters to 10s of meters in the near field of former ice sheets, and up to a few meters in their far field. We demonstrate how forebulge dynamics and continental levering are affected by laterally varying Earth structure, with a particular focus on those sites with prominent LIG sea level records. Results from three 3D GIA calculations show that accounting for lateral structure acts to increase local sea level by up to ~1.5m at the Seychelles and minimally decrease it in Western Australia. We acknowledge that this result is only based on a few simulations, but if robust, this shift brings estimates of global mean sea level from these two sites into closer agreement with each other. We further demonstrate that simulations with a suitable radial viscosity profile can be used to locally approximate the 3D GIA result, but that these radial profiles cannot be found by simply averaging viscosity below the sea level indicator site.


Sign in / Sign up

Export Citation Format

Share Document