No evidence that common allelic variation in the Amyloid Precursor Protein (APP) gene confers susceptibility to Alzheimer's disease

1995 ◽  
Vol 4 (5) ◽  
pp. 853-858 ◽  
Author(s):  
M. B. Liddell ◽  
A. J. Bayer ◽  
M. J. Owen
PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0237122
Author(s):  
Antoine Guyon ◽  
Joël Rousseau ◽  
Gabriel Lamothe ◽  
Jacques P. Tremblay

The deposition of Aβ plaques in the brain leads to the onset and development of Alzheimer’s disease. The Amyloid precursor protein (APP) is cleaved by α-secretase (non-amyloidogenic processing of APP), however increased cleavage by β-secretase (BACE1) leads to the accumulation of Aβ peptides, which forms plaques. APP mutations mapping to exons 16 and 17 favor plaque accumulation and cause Familial Alzheimer Disease (FAD). However, a variant of the APP gene (A673T) originally found in an Icelandic population reduces BACE1 cleavage by 40%. A series of plasmids containing the APP gene, each with one of 29 different FAD mutations mapping to exon 16 and exon 17 was created. These plasmids were then replicated with the addition of the A673T mutation. Combined these formed the library of plasmids that was used in this study. The plasmids were transfected in neuroblastomas to assess the effect of this mutation on Aβ peptide production. The production of Aβ peptides was decreased for some FAD mutations due to the presence of the co-dominant A673T mutation. The reduction of Aβ peptide concentrations for the London mutation (V717I) even reached the same level as for A673T control in SH-SY5Y cells. These preliminary results suggest that the insertion of A673T in APP genes containing FAD mutations might confer a clinical benefit in preventing or delaying the onset of some FADs.


2003 ◽  
Vol 70 ◽  
pp. 213-220 ◽  
Author(s):  
Gerald Koelsch ◽  
Robert T. Turner ◽  
Lin Hong ◽  
Arun K. Ghosh ◽  
Jordan Tang

Mempasin 2, a ϐ-secretase, is the membrane-anchored aspartic protease that initiates the cleavage of amyloid precursor protein leading to the production of ϐ-amyloid and the onset of Alzheimer's disease. Thus memapsin 2 is a major therapeutic target for the development of inhibitor drugs for the disease. Many biochemical tools, such as the specificity and crystal structure, have been established and have led to the design of potent and relatively small transition-state inhibitors. Although developing a clinically viable mempasin 2 inhibitor remains challenging, progress to date renders hope that memapsin 2 inhibitors may ultimately be useful for therapeutic reduction of ϐ-amyloid.


2020 ◽  
Vol 21 (12) ◽  
pp. 1164-1173
Author(s):  
Siju Ellickal Narayanan ◽  
Nikhila Sekhar ◽  
Rajalakshmi Ganesan Rajamma ◽  
Akash Marathakam ◽  
Abdullah Al Mamun ◽  
...  

: Alzheimer’s disease (AD) is a progressive brain disorder and one of the most common causes of dementia and death. AD can be of two types; early-onset and late-onset, where late-onset AD occurs sporadically while early-onset AD results from a mutation in any of the three genes that include amyloid precursor protein (APP), presenilin 1 (PSEN 1) and presenilin 2 (PSEN 2). Biologically, AD is defined by the presence of the distinct neuropathological profile that consists of the extracellular β-amyloid (Aβ) deposition in the form of diffuse neuritic plaques, intraneuronal neurofibrillary tangles (NFTs) and neuropil threads; in dystrophic neuritis, consisting of aggregated hyperphosphorylated tau protein. Elevated levels of (Aβ), total tau (t-tau) and phosphorylated tau (ptau) in cerebrospinal fluid (CSF) have become an important biomarker for the identification of this neurodegenerative disease. The aggregation of Aβ peptide derived from amyloid precursor protein initiates a series of events that involve inflammation, tau hyperphosphorylation and its deposition, in addition to synaptic dysfunction and neurodegeneration, ultimately resulting in dementia. The current review focuses on the role of proteomes in the pathogenesis of AD.


2019 ◽  
Vol 294 (25) ◽  
pp. 9760-9770 ◽  
Author(s):  
Shuyu Liu ◽  
Fujiko Ando ◽  
Yu Fujita ◽  
Junjun Liu ◽  
Tomoji Maeda ◽  
...  

Inhibition of angiotensin-converting enzyme (ACE) is a strategy used worldwide for managing hypertension. In addition to converting angiotensin I to angiotensin II, ACE also converts neurotoxic β-amyloid protein 42 (Aβ42) to Aβ40. Because of its neurotoxicity, Aβ42 is believed to play a causative role in the development of Alzheimer's disease (AD), whereas Aβ40 has neuroprotective effects against Aβ42 aggregation and also against metal-induced oxidative damage. Whether ACE inhibition enhances Aβ42 aggregation or impairs human cognitive ability are very important issues for preventing AD onset and for optimal hypertension management. In an 8-year longitudinal study, we found here that the mean intelligence quotient of male, but not female, hypertensive patients taking ACE inhibitors declined more rapidly than that of others taking no ACE inhibitors. Moreover, the sera of all AD patients exhibited a decrease in Aβ42-to-Aβ40–converting activity compared with sera from age-matched healthy individuals. Using human amyloid precursor protein transgenic mice, we found that a clinical dose of an ACE inhibitor was sufficient to increase brain amyloid deposition. We also generated human amyloid precursor protein/ACE+/− mice and found that a decrease in ACE levels promoted Aβ42 deposition and increased the number of apoptotic neurons. These results suggest that inhibition of ACE activity is a risk factor for impaired human cognition and for triggering AD onset.


Neuroscience ◽  
2020 ◽  
Vol 424 ◽  
pp. 184-202
Author(s):  
Rosemary A. Bamford ◽  
Jocelyn Widagdo ◽  
Natsuki Takamura ◽  
Madeline Eve ◽  
Victor Anggono ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document