scholarly journals A clinical dose of angiotensin-converting enzyme (ACE) inhibitor and heterozygous ACE deletion exacerbate Alzheimer's disease pathology in mice

2019 ◽  
Vol 294 (25) ◽  
pp. 9760-9770 ◽  
Author(s):  
Shuyu Liu ◽  
Fujiko Ando ◽  
Yu Fujita ◽  
Junjun Liu ◽  
Tomoji Maeda ◽  
...  

Inhibition of angiotensin-converting enzyme (ACE) is a strategy used worldwide for managing hypertension. In addition to converting angiotensin I to angiotensin II, ACE also converts neurotoxic β-amyloid protein 42 (Aβ42) to Aβ40. Because of its neurotoxicity, Aβ42 is believed to play a causative role in the development of Alzheimer's disease (AD), whereas Aβ40 has neuroprotective effects against Aβ42 aggregation and also against metal-induced oxidative damage. Whether ACE inhibition enhances Aβ42 aggregation or impairs human cognitive ability are very important issues for preventing AD onset and for optimal hypertension management. In an 8-year longitudinal study, we found here that the mean intelligence quotient of male, but not female, hypertensive patients taking ACE inhibitors declined more rapidly than that of others taking no ACE inhibitors. Moreover, the sera of all AD patients exhibited a decrease in Aβ42-to-Aβ40–converting activity compared with sera from age-matched healthy individuals. Using human amyloid precursor protein transgenic mice, we found that a clinical dose of an ACE inhibitor was sufficient to increase brain amyloid deposition. We also generated human amyloid precursor protein/ACE+/− mice and found that a decrease in ACE levels promoted Aβ42 deposition and increased the number of apoptotic neurons. These results suggest that inhibition of ACE activity is a risk factor for impaired human cognition and for triggering AD onset.

2000 ◽  
Vol 28 (4) ◽  
pp. 441-446
Author(s):  
N. M. Hooper ◽  
A. J. Turner

Angiotensin-converting enzyme (ACE) and the Alzheimer's disease amyloid precursor protein are two examples of membrane-bound proteins that are released in a soluble form by a post-trans-lational proteolytic cleavage event involving a secretase. Site-specific antibodies and matrix-assisted laser desorption ionization-time-of-flight (‘MALDI-TOF’) MS have been used to map the secretase cleavage site in somatic ACE to Arg-1203/Ser-1204, 24 residues proximal to the membrane-anchoring domain. Trypsin, which can solubilize ACE from the membrane, cleaves the protein at the same site. The use of structurally related hydroxamic acid-based zinc metalloproteinase inhibitors indicate that tumour necrosis factor-α convertase, a member of the ADAMs (‘a disintegrin and metalloproteinase’) family of proteins, is not involved in the proteolytic release of ACE, or in the constitutive or regulated α-secretase release of the amyloid precursor protein from a human neuronal cell line.


2003 ◽  
Vol 70 ◽  
pp. 213-220 ◽  
Author(s):  
Gerald Koelsch ◽  
Robert T. Turner ◽  
Lin Hong ◽  
Arun K. Ghosh ◽  
Jordan Tang

Mempasin 2, a ϐ-secretase, is the membrane-anchored aspartic protease that initiates the cleavage of amyloid precursor protein leading to the production of ϐ-amyloid and the onset of Alzheimer's disease. Thus memapsin 2 is a major therapeutic target for the development of inhibitor drugs for the disease. Many biochemical tools, such as the specificity and crystal structure, have been established and have led to the design of potent and relatively small transition-state inhibitors. Although developing a clinically viable mempasin 2 inhibitor remains challenging, progress to date renders hope that memapsin 2 inhibitors may ultimately be useful for therapeutic reduction of ϐ-amyloid.


2020 ◽  
Vol 21 (12) ◽  
pp. 1164-1173
Author(s):  
Siju Ellickal Narayanan ◽  
Nikhila Sekhar ◽  
Rajalakshmi Ganesan Rajamma ◽  
Akash Marathakam ◽  
Abdullah Al Mamun ◽  
...  

: Alzheimer’s disease (AD) is a progressive brain disorder and one of the most common causes of dementia and death. AD can be of two types; early-onset and late-onset, where late-onset AD occurs sporadically while early-onset AD results from a mutation in any of the three genes that include amyloid precursor protein (APP), presenilin 1 (PSEN 1) and presenilin 2 (PSEN 2). Biologically, AD is defined by the presence of the distinct neuropathological profile that consists of the extracellular β-amyloid (Aβ) deposition in the form of diffuse neuritic plaques, intraneuronal neurofibrillary tangles (NFTs) and neuropil threads; in dystrophic neuritis, consisting of aggregated hyperphosphorylated tau protein. Elevated levels of (Aβ), total tau (t-tau) and phosphorylated tau (ptau) in cerebrospinal fluid (CSF) have become an important biomarker for the identification of this neurodegenerative disease. The aggregation of Aβ peptide derived from amyloid precursor protein initiates a series of events that involve inflammation, tau hyperphosphorylation and its deposition, in addition to synaptic dysfunction and neurodegeneration, ultimately resulting in dementia. The current review focuses on the role of proteomes in the pathogenesis of AD.


2018 ◽  
Vol 15 (4) ◽  
pp. 386-398 ◽  
Author(s):  
Fabricio Ferreira de Oliveira ◽  
Elizabeth Suchi Chen ◽  
Marilia Cardoso Smith ◽  
Paulo Henrique Ferreira Bertolucci

Background: While the angiotensin-converting enzyme degrades amyloid-β, angiotensinconverting enzyme inhibitors (ACEis) may slow cognitive decline by way of cholinergic effects, by increasing brain substance P and boosting the activity of neprilysin, and by modulating glucose homeostasis and augmenting the secretion of adipokines to enhance insulin sensitivity in patients with Alzheimer’s disease dementia (AD). We aimed to investigate whether ACE gene polymorphisms rs1800764 and rs4291 are associated with cognitive and functional change in patients with AD, while also taking APOE haplotypes and anti-hypertensive treatment with ACEis into account for stratification. Methods: Consecutive late-onset AD patients were screened with cognitive tests, while their caregivers were queried for functional and caregiver burden scores. Prospective pharmacogenetic correlations were estimated for one year, considering APOE and ACE genotypes and haplotypes, and treatment with ACEis. Results: For 193 patients, minor allele frequencies were 0.497 for rs1800764 – C (44.6% heterozygotes) and 0.345 for rs4291 – T (38.9% heterozygotes), both in Hardy-Weinberg equilibrium. Almost 94% of all patients used cholinesterase inhibitors, while 155 (80.3%) had arterial hypertension, and 124 used ACEis. No functional impacts were found regarding any genotypes or pharmacological treatment. Either for carriers of ACE haplotypes that included rs1800764 – T and rs4291 – A, or for APOE4- carriers of rs1800764 – T or rs4291 – T, ACEis slowed cognitive decline independently of blood pressure variations. APOE4+ carriers were not responsive to treatment with ACEis. Conclusion: ACEis may slow cognitive decline for patients with AD, more remarkably for APOE4- carriers of specific ACE genotypes.


Neuroscience ◽  
2020 ◽  
Vol 424 ◽  
pp. 184-202
Author(s):  
Rosemary A. Bamford ◽  
Jocelyn Widagdo ◽  
Natsuki Takamura ◽  
Madeline Eve ◽  
Victor Anggono ◽  
...  

2020 ◽  
pp. 1-16
Author(s):  
Margaret Ryan ◽  
Valerie T.Y. Tan ◽  
Nasya Thompson ◽  
Diane Guévremont ◽  
Bruce G. Mockett ◽  
...  

Background: Secreted amyloid precursor protein-alpha (sAPPα) can enhance memory and is neurotrophic and neuroprotective across a range of disease-associated insults, including amyloid-β toxicity. In a significant step toward validating sAPPα as a therapeutic for Alzheimer’s disease (AD), we demonstrated that long-term overexpression of human sAPPα (for 8 months) in a mouse model of amyloidosis (APP/PS1) could prevent the behavioral and electrophysiological deficits that develop in these mice. Objective: To explore the underlying molecular mechanisms responsible for the significant physiological and behavioral improvements observed in sAPPα-treated APP/PS1 mice. Methods: We assessed the long-term effects on the hippocampal transcriptome following continuous lentiviral delivery of sAPPα or empty-vector to male APP/PS1 mice and wild-type controls using Affymetrix Mouse Transcriptome Assays. Data analysis was carried out within the Affymetrix Transcriptome Analysis Console and an integrated analysis of the resulting transcriptomic data was performed with Ingenuity Pathway analysis (IPA). Results: Mouse transcriptome assays revealed expected AD-associated gene expression changes in empty-vector APP/PS1 mice, providing validation of the assays used for the analysis. By contrast, there were specific sAPPα-associated gene expression profiles which included increases in key neuroprotective genes such as Decorin, betaine-GABA transporter, and protocadherin beta-5, subsequently validated by qRT-PCR. An integrated biological pathways analysis highlighted regulation of GABA receptor signaling, cell survival, and inflammatory responses. Furthermore, upstream gene regulatory analysis implicated sAPPα activation of Interleukin-4, which can counteract inflammatory changes in AD. Conclusion: This study identified key molecular processes that likely underpin the long-term neuroprotective and therapeutic effects of increasing sAPPα levels in vivo


Science ◽  
1991 ◽  
Vol 254 (5028) ◽  
pp. 97-99 ◽  
Author(s):  
J Murrell ◽  
M Farlow ◽  
B Ghetti ◽  
M. Benson

Sign in / Sign up

Export Citation Format

Share Document