P–290 Time-course analysis of endometrial miR/isomiR expression dynamics during hCG-primed menstrual-cycle phase transitions

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
M Nikolova ◽  
M Naydenov ◽  
A Apostolov ◽  
I Glogovitis ◽  
M Saare ◽  
...  

Abstract Study question What is the qualitative and quantitative profile of microRNAs (miR) and their sequence variants - isomiRs, and how it changes during the menstrual-cycle phase transitions? Summary answer Time-course analysis of endometrial miR/isomiR profiles has shown that menstrual-phase transitions cause widespread and complex changes in miR gene expression and processing. What is known already Embryo implantation depends on the receptivity of the endometrium during the window of implantation, when ovarian hormones and genetic factors coordinate the development of the uterine lining and prepare it for embryo implantation. The most important factors for successful implantation studied so far are the embryo itself, the histological dating of the endometrium and its molecular genetic characteristics, including miRs. With the rapid development of next-generation sequencing technologies, it has become clear that miR genes have the potential to produce not only miR but also variants (isomiRs) thereof, which can differ in sequence and length and can be functionally significant. Study design, size, duration miR/isomiR landscape was assessed by small RNA sequencing of endometrial biopsy samples at 4 time points of endometrial cycle covering the proliferative and secretory phases. Healthy, fertile, female volunteers took part in the study lasting one and a half years. For accurate phase dating, human chorionic gonadotropin (hCG) was administrated, and ultrasonic, histological and hormonal assessments were done at each time point. Statistically significant data of miR/isomiR identification and expression dynamics was considered for analysis. Participants/materials, setting, methods Participant choice criteria - at least one child born, problem-free pregnancies, no diseases or allergies; hCG application time determined according follicle and endometrium ultrasound scanning, and ovarian hormone levels; endometrial biopsies taken at hGC (before hormone application), hGC+2, hGC+7, hGC+9 time points; small RNAseq completed by Karolinska Institute, Sweden; miR/isomiR identified using local Galaxy instance with an in-built workflow and tools developed by our laboratory; differential expression and target prediction evaluated with DESeq2 and miRDB,resp. Main results and the role of chance Within the cohort of patients, across the four study time points, the small RNAseq data revealed numbers of miRs and isomiRs to be changed. The largest statistically significant changes in their expression were found at LH + 9. The miR families that showed the largest number of members with altered expression were miR125a, miR30d, miR449c, miR92a/b and miR99a. The expression levels tended to decrease in the miR125a and miR92a families and to increase in the miR10a and miR449c families during the three studied time points of the cycle compared to the proliferative phase. Among those affected, the number of isomiRs, including templated and non-templated isomiRs, was much higher than that of miRs. For example, the ratio of the significantly altered miRs/templated isomiRs/non-templated isomiRs was 6/16/11 at LH + 9. Templated isomiRs of hsa-miR–148a–3p, hsa-miR–30d–5p and hsa-miR–449c–5p were among the most upregulated, while several templated and non-templated isomiRs of hsa-miR–125–5p were the most downregulated at LH + 9. Of particular interest are those isomiRs, in which the seed site is shifted compared to the reference miRs and results in altered target transcripts. Target prediction of the most affected isomiR of hsa-miR–449c–5p identified new targets of target scores much higher than of the reference miR. Limitations, reasons for caution IsomiRs are a source of novel biomarkers for clinical diagnosis. An important next step is the validation of the in-silico predicted miRs/isomiRs and their target transcripts by RT-qPCR in larger number of individuals. Expression profiles should be associated with the dominant cell type in the endometrial biopsy preparation. Wider implications of the findings: MiR/isomiR signatures, together with those of their target mRNAs, can be applied to distinguish the endometrial phases, especially the implantation window, as well as for diagnosing endometrial dysfunction. It is worth investigating the possibility of miRs/isomiRs being used as biomarkers not only in endometrial biopsy but also in liquid biopsy. Trial registration number The Bulgarian National Science Fund КП–06 Н31/2

2001 ◽  
Vol 91 (4) ◽  
pp. 1791-1799 ◽  
Author(s):  
Stephen R. Muza ◽  
Paul B. Rock ◽  
Charles S. Fulco ◽  
Stacy Zamudio ◽  
Barry Braun ◽  
...  

Women living at low altitudes or acclimatized to high altitudes have greater effective ventilation in the luteal (L) compared with follicular (F) menstrual cycle phase and compared with men. We hypothesized that ventilatory acclimatization to high altitude would occur more quickly and to a greater degree in 1) women in their L compared with women in their F menstrual cycle phase, and 2) in women compared with men. Studies were conducted on 22 eumenorrheic, unacclimatized, sea-level (SL) residents. Indexes of ventilatory acclimatization [resting ventilatory parameters, hypoxic ventilatory response, hypercapnic ventilatory response (HCVR)] were measured in 14 women in the F phase and in 8 other women in the L phase of their menstrual cycle, both at SL and again during a 12-day residence at 4,300 m. At SL only, ventilatory studies were also completed in both menstrual cycle phases in 12 subjects (i.e., within-subject comparison). In these subjects, SL alveolar ventilation (expressed as end-tidal Pco 2) was greater in the L vs. F phase. Yet the comparison between L- and F-phase groups found similar levels of resting end-tidal Pco 2, hypoxic ventilatory response parameter A, HCVR slope, and HCVR parameter B, both at SL and 4,300 m. Moreover, these indexes of ventilatory acclimatization were not significantly different from those previously measured in men. Thus female lowlanders rapidly ascending to 4,300 m in either the L or F menstrual cycle phase have similar levels of alveolar ventilation and a time course for ventilatory acclimatization that is nearly identical to that reported in male lowlanders.


1985 ◽  
Vol 249 (2) ◽  
pp. R186-R191 ◽  
Author(s):  
L. A. Stephenson ◽  
M. A. Kolka

The changes occurring in the esophageal temperature (Tes) thresholds for initiation of heat loss responses as affected by the circadian period and menstrual cycle were studied. Four women exercised at 60% peak Vo2 in 35 degrees C (ambient water vapor pressure 1.73 kPa) for 30 min at 0400 and 1600 during the follicular (F) and luteal (L) phase. Tes, arm sweating rate (msw), and forearm blood flow (FBF) were measured frequently. At rest, Tes averaged 0.3 degrees C higher during L than F at both 0400 and 1600 and approximately 0.4 degrees C higher at 1600 than at 0400 during both phases. During exercise transients, the slopes of the FBF:Tes and the msw:Tes relationships were not different among treatments. The thresholds for initiation of sweating and cutaneous vasodilation were higher at 1600 than 0400 during both phases. Thresholds during F at 0400 averaged 36.44 degrees C for msw and 36.80 degrees C for vasodilation. The thresholds during L at 1600 averaged 37.46 and 37.53 degrees C for sweating and vasodilation, respectively. Our data indicate that the thermoregulatory effector activity during exercise is a function of numerous inputs, and one of these may be hormonal or hormonal-like in action. Controlling time of day and menstrual cycle phase are as important as controlling for aerobic power, age, and fitness in studying female thermoregulatory responses during exercise.


2009 ◽  
Vol 106 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Marie K. Hoeger Bement ◽  
Rebecca L. Rasiarmos ◽  
John M. DiCapo ◽  
Audrey Lewis ◽  
Manda L. Keller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document