scholarly journals Chromosome constitution and apoptosis of immature germ cells present in sperm of two 47,XYY infertile males

2006 ◽  
Vol 21 (7) ◽  
pp. 1749-1758 ◽  
Author(s):  
J.P. Milazzo ◽  
N. Rives ◽  
N. Mousset-Siméon ◽  
B. Macé
Development ◽  
1985 ◽  
Vol 88 (1) ◽  
pp. 327-332
Author(s):  
Heather Hogg ◽  
Anne Mclaren

Sex vesicles were not seen in meiotic germ cells isolated from male and female foetal adrenals, although they were readily identified in adult male meiotic germ cells prepared by the same air-drying method. It is suggested that the failure of the XY germ cells from the male adrenals to develop a sex vesicle is due to their embarking on oogenesis rather than spermatogenesis, and that the absence of a sex vesicle does not necessarily indicate lack of a Y chromosome.


2006 ◽  
Vol 103 (30) ◽  
pp. 11184-11188 ◽  
Author(s):  
G. Durcova-Hills ◽  
P. Hajkova ◽  
S. Sullivan ◽  
S. Barton ◽  
M. A. Surani ◽  
...  

If I adhere strictly to the title proposed for me and speak only of the genetic activity of the sex chromosomes in germ cells, there is very little to say. The evidence is necessarily indirect and includes, first, examples of differential behaviour of germ cells of different sex chromosome constitution in situations where competitive proliferation is a possibility, as in some mosaics and chimaeras; and secondly, exceptional species in which the sex chromosome constitution is normally different in germ cells and soma. The species concerned are all mammals. An instance of the first kind is provided by observations made on a 39,X /41,XYY mosaic mouse discovered by chance in the course of an irradiation experiment (Evans, Ford & Searle 1969). All the spermatogonia and spermatocytes examined contained 41 chromosomes, including two Y chromosomes, whereas bone marrow (the only other tissue examined) was mosaic, the probability of difference being due to sampling error being very low. The question, then, was whether the failure to detect mosaicism among the germ cells was a consequence of chance exclusion of the 39, X cell type from the germ line during development, or of differential proliferation and/or survival of 41,XYY germ cells in the testicular environment. The latter interpretation was favoured on the grounds: (1) A 39,X /41,XYY mosaic is likely to have originated by non-disjunction of the Y chromosome at the first cleavage division of a 40,XY zygote, since other theoretically possible modes of origin would require the combination of rare events or other implausible assumptions. (2) Primordial germ cells of the constitution 39, X are capable of reaching the developing gonad and subsequently forming functional oocytes as evidenced by the fertility of 39, X female mice (Russell, Russell & Gower 1959). (3) Nearly all half-and-half coat colour mosaic mutants are also germ cell mosaics (Russell 1964), implying that when two distinct cell lines are present very early in development both lines are likely to be represented among the germ cells


1975 ◽  
Vol 190 (1099) ◽  
pp. 187-197 ◽  

Two fertile female chimaeras derived by aggregation of morulae from the inbred mouse strains AKR/J and CBA/H-T6 were found to be of mixed sex chromosome constitution, XX/XY. The XY component of both chimaeras was AKR (albino). The records showed that one of the chimaeras had two litters totalling seven young including an exceptional son with an albino coat. This implied that the maternal gamete had originated from the XY component. Other possible explanations are examined and effectively excluded. The exceptional son was sterile and was later found to have the rare 41, XXY (‘Klinefelter’) karyotype. The possibility of functional reversal of germ cells in mouse chimaeras had hitherto been dismissed on the basis of the apparently undisturbed sex ratio of their progeny and the great excess of single-phenotype progenies in test matings. This evidence is re-examined and shown to be indecisive for female chimaeras.


Author(s):  
Rita Meyer ◽  
Zoltan Posalaky ◽  
Dennis Mcginley

The Sertoli cell tight junctional complexes have been shown to be the most important structural counterpart of the physiological blood-testis barrier. In freeze etch replicas they consist of extensive rows of intramembranous particles which are not only oriented parallel to one another, but to the myoid layer as well. Thus the occluding complex has both an internal and an overall orientation. However, this overall orientation to the myoid layer does not seem to be necessary to its barrier function. The 20 day old rat has extensive parallel tight junctions which are not oriented with respect to the myoid layer, and yet they are inpenetrable by lanthanum. The mechanism(s) for the control of Sertoli cell junction development and orientation has not been established, although such factors as the presence or absence of germ cells, and/or hormones, especially FSH have been implicated.


Author(s):  
J. R. Ruby ◽  
R. F. Dyer ◽  
R. G. Skalko ◽  
R. F. Gasser ◽  
E. P. Volpe

An electron microscope examination of fetal ovaries has revealed that developing germ cells are connected by intercellular bridges. In this investigation several species have been studied including human, mouse, chicken, and tadpole (Rana pipiens). These studies demonstrate that intercellular connections are similar in morphology regardless of the species.Basically, all bridges are characterized by a band of electron-dense material on the cytoplasmic side of the tri-laminar membrane surrounding the connection (Fig.l). This membrane is continuous with the plasma membrane of the conjoined cells. The dense material, however, never extends beyond the limits of the bridge. Variations in the configuration of intercellular connections were noted in all ovaries studied. However, the bridges in each individual species usually exhibits one structural characteristic seldom found in the others. For example, bridges in the human ovary very often have large blebs projecting from the lateral borders whereas the sides of the connections in the mouse gonad merely demonstrate a slight convexity.


Author(s):  
Amreek Singh ◽  
Warren G. Foster ◽  
Anna Dykeman ◽  
David C. Villeneuve

Hexachlorobenzene (HCB) is a known toxicant that is found in the environment as a by-product during manufacture of certain pesticides. This chlorinated chemical has been isolated from many tissues including ovary. When administered in high doses, HCB causes degeneration of primordial germ cells and ovary surface epithelium in sub-human primates. A purpose of this experiment was to determine a no-effect dose of the chemical on the rat ovary. The study is part of a comprehensive investigation on the effects of the compound on the biochemical, hematological, and morphological parameters in the monkey and rat.


Author(s):  
Judy Ju-Hu Chiang ◽  
Robert Kuo-Cheng Chen

Germ cells from the rice stem borer Chilo suppresalis, were examined by light and electron microscopy. Damages to organelles within the germ cells were observed. The mitochondria, which provide the cell with metabolic energy, were seen to disintegrate within the germ cell. Lysosomes within the germ cell were also seen to disintegrate. The subsequent release of hydrolytic enzymesmay be responsible for the destruction of organelles within the germ cell. Insect spermatozoa were seen to lose the ability to move because of radiation treatment. Damage to the centrioles, one of which is in contact with the tail, may be involved in causing sperm immobility.


2004 ◽  
Vol 171 (4S) ◽  
pp. 362-363
Author(s):  
Mark G. Schrader ◽  
Markus Muller ◽  
Wolfgang Schulze ◽  
Steffen Weikert ◽  
Kurt Miller

Sign in / Sign up

Export Citation Format

Share Document