Genetic activity of sex chromosomes in germinal cells

If I adhere strictly to the title proposed for me and speak only of the genetic activity of the sex chromosomes in germ cells, there is very little to say. The evidence is necessarily indirect and includes, first, examples of differential behaviour of germ cells of different sex chromosome constitution in situations where competitive proliferation is a possibility, as in some mosaics and chimaeras; and secondly, exceptional species in which the sex chromosome constitution is normally different in germ cells and soma. The species concerned are all mammals. An instance of the first kind is provided by observations made on a 39,X /41,XYY mosaic mouse discovered by chance in the course of an irradiation experiment (Evans, Ford & Searle 1969). All the spermatogonia and spermatocytes examined contained 41 chromosomes, including two Y chromosomes, whereas bone marrow (the only other tissue examined) was mosaic, the probability of difference being due to sampling error being very low. The question, then, was whether the failure to detect mosaicism among the germ cells was a consequence of chance exclusion of the 39, X cell type from the germ line during development, or of differential proliferation and/or survival of 41,XYY germ cells in the testicular environment. The latter interpretation was favoured on the grounds: (1) A 39,X /41,XYY mosaic is likely to have originated by non-disjunction of the Y chromosome at the first cleavage division of a 40,XY zygote, since other theoretically possible modes of origin would require the combination of rare events or other implausible assumptions. (2) Primordial germ cells of the constitution 39, X are capable of reaching the developing gonad and subsequently forming functional oocytes as evidenced by the fertility of 39, X female mice (Russell, Russell & Gower 1959). (3) Nearly all half-and-half coat colour mosaic mutants are also germ cell mosaics (Russell 1964), implying that when two distinct cell lines are present very early in development both lines are likely to be represented among the germ cells

Reproduction ◽  
2008 ◽  
Vol 135 (2) ◽  
pp. 241-252 ◽  
Author(s):  
Michelle Alton ◽  
Mau Pan Lau ◽  
Michele Villemure ◽  
Teruko Taketo

Sexual differentiation of the germ cells follows gonadal differentiation, which is determined by the presence or the absence of the Y-chromosome. Consequently, oogenesis and spermatogenesis take place in the germ cells with XX and XY sex chromosomal compositions respectively. It is unclear how sexual dimorphic regulation of meiosis is associated with the sex-chromosomal composition. In the present study, we examined the behavior of the sex chromosomes in the oocytes of the B6.YTIRsex-reversed female mouse, in comparison with XO and XX females. As the sex chromosomes fail to pair in both XY and XO oocytes during meiotic prophase, we anticipated that the pairing failure may lead to excessive oocyte loss. However, the total number of germ cells, identified by immunolabeling of germ cell nuclear antigen 1 (GCNA1), did not differ between XY and XX ovaries or XO and XX ovaries up to the day of delivery. The progression of meiotic prophase, assessed by immunolabeling of synaptonemal complex components, was also similar between the two genotypes of ovaries. These observations suggest that the failure in sex-chromosome pairing is not sufficient to cause oocyte loss. On the other hand, labeling of phosphorylated histone γH2AX, known to be associated with asynapsis and transcriptional repression, was seen over the X-chromosome but not over the Y-chromosome in the majority of XY oocytes at the pachytene stage. For comparison, γH2AX labeling was seen only in the minority of XX oocytes at the same stage. We speculate that the transcriptional activity of sex chromosomes in the XY oocyte may be incompatible with ooplasmic maturation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sharvani Mahadevaraju ◽  
Justin M. Fear ◽  
Miriam Akeju ◽  
Brian J. Galletta ◽  
Mara M. L. S. Pinheiro ◽  
...  

AbstractGiven their copy number differences and unique modes of inheritance, the evolved gene content and expression of sex chromosomes is unusual. In many organisms the X and Y chromosomes are inactivated in spermatocytes, possibly as a defense mechanism against insertions into unpaired chromatin. In addition to current sex chromosomes, Drosophila has a small gene-poor X-chromosome relic (4th) that re-acquired autosomal status. Here we use single cell RNA-Seq on fly larvae to demonstrate that the single X and pair of 4th chromosomes are specifically inactivated in primary spermatocytes, based on measuring all genes or a set of broadly expressed genes in testis we identified. In contrast, genes on the single Y chromosome become maximally active in primary spermatocytes. Reduced X transcript levels are due to failed activation of RNA-Polymerase-II by phosphorylation of Serine 2 and 5.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryoma Ota ◽  
Makoto Hayashi ◽  
Shumpei Morita ◽  
Hiroki Miura ◽  
Satoru Kobayashi

AbstractDosage compensation is a mechanism that equalizes sex chromosome gene expression between the sexes. In Drosophila, individuals with two X chromosomes (XX) become female, whereas males have one X chromosome (XY). In males, dosage compensation of the X chromosome in the soma is achieved by five proteins and two non-coding RNAs, which assemble into the male-specific lethal (MSL) complex to upregulate X-linked genes twofold. By contrast, it remains unclear whether dosage compensation occurs in the germline. To address this issue, we performed transcriptome analysis of male and female primordial germ cells (PGCs). We found that the expression levels of X-linked genes were approximately twofold higher in female PGCs than in male PGCs. Acetylation of lysine residue 16 on histone H4 (H4K16ac), which is catalyzed by the MSL complex, was undetectable in these cells. In male PGCs, hyperactivation of X-linked genes and H4K16ac were induced by overexpression of the essential components of the MSL complex, which were expressed at very low levels in PGCs. Together, these findings indicate that failure of MSL complex formation results in the absence of X-chromosome dosage compensation in male PGCs.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lingzhan Xue ◽  
Yu Gao ◽  
Meiying Wu ◽  
Tian Tian ◽  
Haiping Fan ◽  
...  

Abstract Background The origin of sex chromosomes requires the establishment of recombination suppression between the proto-sex chromosomes. In many fish species, the sex chromosome pair is homomorphic with a recent origin, providing species for studying how and why recombination suppression evolved in the initial stages of sex chromosome differentiation, but this requires accurate sequence assembly of the X and Y (or Z and W) chromosomes, which may be difficult if they are recently diverged. Results Here we produce a haplotype-resolved genome assembly of zig-zag eel (Mastacembelus armatus), an aquaculture fish, at the chromosomal scale. The diploid assembly is nearly gap-free, and in most chromosomes, we resolve the centromeric and subtelomeric heterochromatic sequences. In particular, the Y chromosome, including its highly repetitive short arm, has zero gaps. Using resequencing data, we identify a ~7 Mb fully sex-linked region (SLR), spanning the sex chromosome centromere and almost entirely embedded in the pericentromeric heterochromatin. The SLRs on the X and Y chromosomes are almost identical in sequence and gene content, but both are repetitive and heterochromatic, consistent with zero or low recombination. We further identify an HMG-domain containing gene HMGN6 in the SLR as a candidate sex-determining gene that is expressed at the onset of testis development. Conclusions Our study supports the idea that preexisting regions of low recombination, such as pericentromeric regions, can give rise to SLR in the absence of structural variations between the proto-sex chromosomes.


2001 ◽  
Vol 78 (1) ◽  
pp. 23-30 ◽  
Author(s):  
MARIKO KONDO ◽  
ERIKO NAGAO ◽  
HIROSHI MITANI ◽  
AKIHIRO SHIMA

In the medaka, Oryzias latipes, sex is determined chromosomally. The sex chromosomes differ from those of mammals in that the X and Y chromosomes are highly homologous. Using backcross panels for linkage analysis, we mapped 21 sequence tagged site (STS) markers on the sex chromosomes (linkage group 1). The genetic map of the sex chromosome was established using male and female meioses. The genetic length of the sex chromosome was shorter in male than in female meioses. The region where male recombination is suppressed is the region close to the sex-determining gene y, while female recombination was suppressed in both the telomeric regions. The restriction in recombination does not occur uniformly on the sex chromosome, as the genetic map distances of the markers are not proportional in male and female recombination. Thus, this observation seems to support the hypothesis that the heterogeneous sex chromosomes were derived from suppression of recombination between autosomal chromosomes. In two of the markers, Yc-2 and Casp6, which were expressed sequence-tagged (EST) sites, polymorphisms of both X and Y chromosomes were detected. The alleles of the X and Y chromosomes were also detected in O. curvinotus, a species related to the medaka. These markers could be used for genotyping the sex chromosomes in the medaka and other species, and could be used in other studies on sex chromosomes.


Development ◽  
2022 ◽  
Author(s):  
Yuki Naitou ◽  
Go Nagamatsu ◽  
Nobuhiko Hamazaki ◽  
Kenjiro Shirane ◽  
Masafumi Hayashi ◽  
...  

In mammals, primordial germ cells (PGCs), the origin of the germ line, are specified from the epiblast at the posterior region where gastrulation simultaneously occurs, yet the functional relationship between PGC specification and gastrulation remains unclear. Here, we show that Ovol2, a transcription factor conserved across the animal kingdom, balances these major developmental processes by repressing the epithelial-to-mesenchymal transition (EMT) driving gastrulation and the upregulation of genes associated with PGC specification. Ovol2a, a splice variant encoding a repressor domain, directly regulates EMT-related genes and consequently induces re-acquisition of potential pluripotency during PGC specification, whereas Ovol2b, another splice variant missing the repressor domain, directly upregulates genes associated with PGC specification. Taken together, these results elucidate the molecular mechanism underlying allocation of the germ line among epiblast cells differentiating into somatic cells through gastrulation.


Development ◽  
1981 ◽  
Vol 64 (1) ◽  
pp. 251-258
Author(s):  
Andy McMahon ◽  
Mandy Fosten ◽  
Marilyn Monk

The pattern of expression of the two X chromosomes was investigated in pre-meiotic germ cells from 12½-day-old female embryos heterozygous for the variant electrophoretic forms of the X-linked enzyme phosphoglycerate kinase (PGK-1). If such germ cells carry the preferentially active Searle's translocated X chromosome (Lyon, Searle, Ford & Ohno, 1964), then only the Pgk-1 allele on this chromosome is expressed. This confirms Johnston's evidence (1979,1981) that Pgk-1 expression reflects a single active X chromosome at this time. Extracts of 12½-day germ cells from heterozygous females carrying two normal X chromosomes show both the A and the B forms of PGK; since only one X chromosome in each cell is active, different alleles must be expressed in different cells, suggesting that X-chromosome inactivation is normally random in the germ line. This result makes it unlikely that germ cells are derived from the yolk-sac endoderm where the paternally derived X chromosome is preferentially inactivated. In their pattern of X-chromosome inactivation, germ cells evidently resemble other tissues derived from the epiblast.


Development ◽  
1990 ◽  
Vol 109 (4) ◽  
pp. 911-923 ◽  
Author(s):  
A. Orr-Urtreger ◽  
A. Avivi ◽  
Y. Zimmer ◽  
D. Givol ◽  
Y. Yarden ◽  
...  

Developmental expression of the c-kit proto-oncogene, a receptor tyrosine kinase encoded by the W locus, was investigated by in situ hybridization in normal mouse embryos. Early after implantation transcripts were detectable only in the maternal placenta (6 1/2-7 1/2 days p.c.). Subsequently (8 1/2 days p.c.) numerous ectodermal (neural tube, sensory placodes) and endodermal (embryonic gut) derivatives expressed c-kit. Later transcripts were detected also in the blood islands of the yolk sac and in the embryonic liver, the main sites of embryonic hemopoiesis. Around midgestation, transcripts accumulated in the branchial pouches and also in primordial germ cells of the genital ridges. This complex pattern of expression remained characteristic also later in gestation, when c-kit was expressed in highly differentiated structures of the craniofacial area, in presumptive melanoblasts and in the CNS. In the adult ovary, maternal c-kit transcripts were detected. They were present in the oocytes of both immature and mature ovarian follicles, but not in the male germ line, where c-kit expression may be down regulated. Thus, c-kit activity is complex and appears in multiple tissues including those that also display defects in mutations at the W locus where c-kit is encoded. Correlation between W phenotypes and c-kit expression, as well as the regulation of the complex and multiple expression of polypeptide growth factors and receptors, is discussed.


Sign in / Sign up

Export Citation Format

Share Document