Indexing Moving Objects for Future Position Retrieval on Location-Based Services

2005 ◽  
Vol E88-D (6) ◽  
pp. 1289-1293
Author(s):  
D.-M. SEO
2021 ◽  
Vol 13 (2) ◽  
pp. 690
Author(s):  
Tao Wu ◽  
Huiqing Shen ◽  
Jianxin Qin ◽  
Longgang Xiang

Identifying stops from GPS trajectories is one of the main concerns in the study of moving objects and has a major effect on a wide variety of location-based services and applications. Although the spatial and non-spatial characteristics of trajectories have been widely investigated for the identification of stops, few studies have concentrated on the impacts of the contextual features, which are also connected to the road network and nearby Points of Interest (POIs). In order to obtain more precise stop information from moving objects, this paper proposes and implements a novel approach that represents a spatio-temproal dynamics relationship between stopping behaviors and geospatial elements to detect stops. The relationship between the candidate stops based on the standard time–distance threshold approach and the surrounding environmental elements are integrated in a complex way (the mobility context cube) to extract stop features and precisely derive stops using the classifier classification. The methodology presented is designed to reduce the error rate of detection of stops in the work of trajectory data mining. It turns out that 26 features can contribute to recognizing stop behaviors from trajectory data. Additionally, experiments on a real-world trajectory dataset further demonstrate the effectiveness of the proposed approach in improving the accuracy of identifying stops from trajectories.


2020 ◽  
Vol 8 (6) ◽  
pp. 4419-4428

Advancements of various Geographic Information Technologies have resulted in huge growth in Geo-Textual data. Many Indexing and searching algorithms are developed to handle this Geo-Textual data which contains spatial, textual and temporal information. In past, Indexing and searching algorithms are developed for the applications in which the object trajectory or velocity vector is known in advance and hence we can predict the future position of the objects. There are real time applications like emergency management systems, traffic monitoring, where the objects movements are unpredictable and hence future position of the objects cannot be predicted. Techniques are required to answer the geo-textual kNN query where the velocity vectors or trajectories of moving and moving queries are not known. In case of moving objects, capturing current position of the object and maintaining spatial index optimally is very much essential. The hybrid indexing techniques used earlier are based on R-tree spatial index. The nodes of the R-tree index structure are split or merged to maintain the locations of continuously moving objects, increasing the maintenance cost as compared to the grid index. In this paper a solution is proposed for creating and maintaining hybrid index for moving objects and queries based on grid and inverted list hybrid indexing techniques. The method is also proposed for finding Geo-Textual nearest neighbours for static and moving queries using hybrid index and conceptual partitioning of the grid. The overall gain reported by the experimental work using hybrid index over the non- hybrid index is 30 to 40 percent depending on the grid size chosen for mapping the data space and on the parameters of queries.


Author(s):  
N. Marsit

The technological evolution of networks together with the development of positioning systems has contributed to the emergence of numerous location-based services. Services related to this expanding area will become of major technical as well as economical interest in the coming few years. This aroused a great deal of interest from the scientific community at large and specifically from those studying these services and their diverse requirements and constraints. One of the direct consequences in the database field is the appearance of new types of queries (mobile queries issued from mobile terminals and/or requesting information associated with moving objects such as vehicles). Our objective in this chapter is to present a comprehensive survey of the field of research work related to mobile queries, with particular attention to the location issue.


2011 ◽  
pp. 186-203 ◽  
Author(s):  
Ouri Wolfson ◽  
Eduardo Mena

Miniaturization of computing devices and advances in wireless communication and sensor technology are some of the forces propagating computing from the stationary desktop to the mobile outdoors. Some important classes of new applications that will be enabled by this revolutionary development include location-based services, tourist services, mobile electronic commerce and digital battlefield. Some existing application classes that will benefit from the development include transportation and air traffic control, weather forecasting, emergency response, mobile resource management and mobile workforce. Location management, that is, the management of transient location information, is an enabling technology for all these applications. Location management is also a fundamental component of other technologies, such as fly-through visualization, context awareness, augmented reality, cellular communication and dynamic resource discovery. Moving Objects Databases (MODs) store and manage the location as well as other dynamic information about moving objects. In this chapter we will present the applications of MODs and their functionality. The target readership is researchers and engineers working in databases and mobile computing.


2019 ◽  
Vol 26 (8) ◽  
pp. 5551-5560 ◽  
Author(s):  
Rong Tan ◽  
Yuan Tao ◽  
Wen Si ◽  
Yuan-Yuan Zhang

Abstract The development of wireless technologies and the popularity of mobile devices is responsible for generating large amounts of trajectory data for moving objects. Trajectory datasets have spatiotemporal features and are a rich information source. The mining of trajectory data can reveal interesting patterns of human activities and behaviors. However, trajectory data can also be exploited to disclose users’ privacy information, e.g., the places they live and work, which could be abused by a malicious user. Therefore, it is very important to protect the users’ privacy before publishing any trajectory data. While most previous research on this subject has only considered the privacy protection of stay points, this paper distinguishes itself by modeling and processing semantic trajectories, which not only contain spatiotemporal data but also involve POI information and the users’ motion modes such as walking, running, driving, etc. Accordingly, in this research, semantic trajectory anonymizing based on the k-anonymity model is proposed that can form sensitive areas that contain k − 1 POI points that are similar to the sensitive points. Then, trajectory ambiguity is executed based on the motion modes, road network topologies and road weights in the sensitive area. Finally, a similarity comparison is performed to obtain the recordable and releasable anonymity trajectory sets. Experimental results show that this method performs efficiently and provides high privacy levels.


Sign in / Sign up

Export Citation Format

Share Document