Multi-dimensional Taylor network modelling and optimal control of SISO nonlinear systems for tracking by output feedback

2019 ◽  
Vol 37 (3) ◽  
pp. 699-717 ◽  
Author(s):  
Qi-Ming Sun ◽  
Hong-Sen Yan

Abstract In this paper, a multi-dimensional Taylor network (MTN) output feedback tracking control of nonlinear single-input single-output (SISO) systems in discrete-time form is studied. To date, neural networks are generally used to identify unknown nonlinear systems. However, the neuron of neural networks includes the exponential function, which contributes to the complexity of calculation, making the neural network control unable to meet the real-time requirements. In order to identify the controlled object whose model is unknown, the MTN, which requires only addition and multiplication, is utilized for successful real-time control of the SISO nonlinear system based on only its output feedback. Lyapunov analysis proves that output signals in the closed-loop system remain bounded and the tracking error converges to an arbitrarily small neighbourhood around the origin. In contrast to the back propagation (BP) neural network self-adaption reconstitution controller, the edge of the scheme is that the MTN optimal controller promises desirable response speed, robustness and real-time control.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Qi-Ming Sun ◽  
Hong-Sen Yan

The actual controlled objects are generally multi-input and multioutput (MIMO) nonlinear systems with imprecise models or even without models, so it is one of the hot topics in the control theory. Due to the complex internal structure, the general control methods without models tend to be based on neural networks. However, the neuron of neural networks includes the exponential function, which contributes to the complexity of calculation, making the neural network control unable to meet the real-time requirements. The newly developed multidimensional Taylor network (MTN) requires only addition and multiplication, so it is easy to realize real-time control. In the present study, the MTN approach is extended to MIMO nonlinear systems without models to realize adaptive output feedback control. The MTN controller is proposed to guarantee the stability of the closed-loop system. Our experimental results show that the output signals of the system are bounded and the tracking error goes nearly to zero. The MTN optimal controller is proven to promise far better real-time dynamic performance and robustness than the BP neural network self-adaption reconstitution controller.


2017 ◽  
Author(s):  
Roberto Finesso ◽  
Ezio Spessa ◽  
Yixin Yang ◽  
Giuseppe Conte ◽  
Gennaro Merlino

2006 ◽  
Vol 16 (04) ◽  
pp. 305-317 ◽  
Author(s):  
MEIQIN LIU

A neural-model-based control design for some nonlinear systems is addressed. The design approach is to approximate the nonlinear systems with neural networks of which the activation functions satisfy the sector conditions. A novel neural network model termed standard neural network model (SNNM) is advanced for describing this class of approximating neural networks. Full-order dynamic output feedback control laws are then designed for the SNNMs with inputs and outputs to stabilize the closed-loop systems. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. It is shown that most neural-network-based nonlinear systems can be transformed into input-output SNNMs to be stabilization synthesized in a unified way. Finally, some application examples are presented to illustrate the control design procedures.


Sign in / Sign up

Export Citation Format

Share Document