scholarly journals Time and space adaptivity of the wave equation discretized in time by a second-order scheme

2018 ◽  
Vol 39 (4) ◽  
pp. 1672-1705 ◽  
Author(s):  
Olga Gorynina ◽  
Alexei Lozinski ◽  
Marco Picasso

Abstract The aim of this paper is to obtain a posteriori error bounds of optimal order in time and space for the linear second-order wave equation discretized by the Newmark scheme in time and the finite element method in space. An error estimate is derived in the $L^{\infty }$-in-time/energy-in-space norm. Numerical experiments are reported for several test cases and confirm equivalence of the proposed estimator and the true error.

Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. T151-T158 ◽  
Author(s):  
Jing-Bo Chen

High-accuracy numerical schemes for modeling of the scalar wave equation based on Nyström methods are developed in this paper. Space is discretized by using the pseudospectral algorithm. For the time discretization, Nyström methods are used. A fourth-order symplectic Nyström method with pseudospectral spatial discretization is presented. This scheme is compared with a commonly used second-order scheme and a fourth-order nonsymplectic Nyström method. For a typical time-step size, the second-order scheme exhibits spatial dispersion errors for long-time simulations, while both fourth-order schemes do not suffer from these errors. Numerical comparisons show that the fourth-order symplectic algorithm is more accurate than the fourth-order nonsymplectic one. The capability of the symplectic Nyström method in approximately preserving the discrete energy for long-time simulations is also demonstrated.


2012 ◽  
Vol 12 (1) ◽  
pp. 193-225 ◽  
Author(s):  
N. Anders Petersson ◽  
Björn Sjögreen

AbstractWe develop a stable finite difference approximation of the three-dimensional viscoelastic wave equation. The material model is a super-imposition of N standard linear solid mechanisms, which commonly is used in seismology to model a material with constant quality factor Q. The proposed scheme discretizes the governing equations in second order displacement formulation using 3N memory variables, making it significantly more memory efficient than the commonly used first order velocity-stress formulation. The new scheme is a generalization of our energy conserving finite difference scheme for the elastic wave equation in second order formulation [SIAM J. Numer. Anal., 45 (2007), pp. 1902-1936]. Our main result is a proof that the proposed discretization is energy stable, even in the case of variable material properties. The proof relies on the summation-by-parts property of the discretization. The new scheme is implemented with grid refinement with hanging nodes on the interface. Numerical experiments verify the accuracy and stability of the new scheme. Semi-analytical solutions for a half-space problem and the LOH.3 layer over half-space problem are used to demonstrate how the number of viscoelastic mechanisms and the grid resolution influence the accuracy. We find that three standard linear solid mechanisms usually are sufficient to make the modeling error smaller than the discretization error.


The paper is a continuation of the last paper communicated to these 'Proceedings.' In that paper, which we shall refer to as the first paper, a more general expression for space curvature was obtained than that which occurs in Riemannian geometry, by a modification of the Riemannian covariant derivative and by the use of a fifth co-ordinate. By means of a particular substitution (∆ μσ σ = 1/ψ ∂ψ/∂x μ ) it was shown that this curvature takes the form of the second order equation of quantum mechanics. It is not a matrix equation, however but one which has the character of the wave equation as it occurred in the earlier form of the quantum theory. But it contains additional terms, all of which can be readily accounted for in physics, expect on which suggested an identification with energy of the spin.


Sign in / Sign up

Export Citation Format

Share Document