nyström methods
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 21)

H-INDEX

24
(FIVE YEARS 2)

2022 ◽  
Vol 7 (4) ◽  
pp. 5634-5661
Author(s):  
M. Adams ◽  
◽  
J. Finden ◽  
P. Phoncharon ◽  
P. H. Muir

<abstract><p>The high quality COLSYS/COLNEW collocation software package is widely used for the numerical solution of boundary value ODEs (BVODEs), often through interfaces to computing environments such as Scilab, R, and Python. The continuous collocation solution returned by the code is much more accurate at a set of mesh points that partition the problem domain than it is elsewhere; the mesh point values are said to be superconvergent. In order to improve the accuracy of the continuous solution approximation at non-mesh points, when the BVODE is expressed in first order system form, an approach based on continuous Runge-Kutta (CRK) methods has been used to obtain a superconvergent interpolant (SCI) across the problem domain. Based on this approach, recent work has seen the development of a new, more efficient version of COLSYS/COLNEW that returns an error controlled SCI.</p> <p>However, most systems of BVODEs include higher derivatives and a feature of COLSYS/COLNEW is that it can directly treat such mixed order BVODE systems, resulting in improved efficiency, continuity of the approximate solution, and user convenience. In this paper we generalize the approach mentioned above for first order systems to obtain SCIs for collocation solutions of mixed order BVODE systems. The main contribution of this paper is the derivation of generalizations of continuous Runge-Kutta-Nyström methods that form the basis for SCIs for this more general problem class. We provide numerical results that (ⅰ) show that the SCIs are much more accurate than the collocation solutions at non-mesh points, (ⅱ) verify the order of accuracy of these SCIs, and (ⅲ) show that the cost of utilizing the SCIs is a small fraction of the cost of computing the collocation solution upon which they are based.</p></abstract>


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2225
Author(s):  
Maria Jesus Moreta

In this work, we develop a new class of methods which have been created in order to numerically solve non-linear second-order in time problems in an efficient way. These methods are of the Rosenbrock type, and they can be seen as a generalization of these methods when they are applied to second-order in time problems which have been previously transformed into first-order in time problems. As they also follow the ideas of Runge–Kutta–Nyström methods when solving second-order in time problems, we have called them Rosenbrock–Nyström methods. When solving non-linear problems, Rosenbrock–Nyström methods present less computational cost than implicit Runge–Kutta–Nyström ones, as the non-linear systems which arise at every intermediate stage when Runge–Kutta–Nyström methods are used are replaced with sequences of linear ones.


2021 ◽  
Vol 26 (3) ◽  
pp. 59
Author(s):  
Musa Ahmed Demba ◽  
Higinio Ramos ◽  
Poom Kumam ◽  
Wiboonsak Watthayu

An optimized embedded 5(3) pair of explicit Runge–Kutta–Nyström methods with four stages using phase-fitted and amplification-fitted techniques is developed in this paper. The new adapted pair can exactly integrate (except round-off errors) the common test: y″=−w2y. The local truncation error of the new method is derived, and we show that the order of convergence is maintained. The stability analysis is addressed, and we demonstrate that the developed method is absolutely stable, and thus appropriate for solving stiff problems. The numerical experiments show a better performance of the new embedded pair in comparison with other existing RKN pairs of similar characteristics.


2021 ◽  
Author(s):  
Musa Ahmed Demba ◽  
Higinio Ramos ◽  
Poom Kumam ◽  
Wiboonsak Watthayu ◽  
Norazak Senu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document