scholarly journals hp-FEM for the fractional heat equation

Author(s):  
Jens Markus Melenk ◽  
Alexander Rieder

Abstract We consider a time-dependent problem generated by a nonlocal operator in space. Applying for the spatial discretization a scheme based on $hp$-finite elements and a Caffarelli–Silvestre extension we obtain a semidiscrete semigroup. The discretization in time is carried out by using $hp$-discontinuous Galerkin based time stepping. We prove exponential convergence for such a method in an abstract framework for the discretization in the spatial domain $\varOmega $.

2003 ◽  
Vol 37 ◽  
pp. 390-396 ◽  
Author(s):  
Richard C.A. Hindmarsh

AbstractTwo aspects of thermal coupling with bedrock are considered: the coupled time-dependent problem of co-evolving temperatures in lithosphere and ice; and the influence of basal topography on steady temperature distribution within the ice. The nature of the time-dependent coupling is found to depend on the horizontal velocity. As has been suggested, there is a cooling of steady temperatures on bedrock highs, but this is phase-shifted downstream when horizontal velocities increase. This observation may have consequences for geomorphological processes such as plucking and protection. The effect of bedrock channelling on steady temperature is considered. The positive anomaly of basal temperature due to channelling increases as the transverse wavelength decreases, but not monotonically, reaching a plateau when both the wavelengths of the basal topography are around 100 km.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 361-370
Author(s):  
Nguyen Phuong ◽  
Tran Binh ◽  
Nguyen Luc ◽  
Nguyen Can

In this work, we study a truncation method to solve a time fractional diffusion equation on the sphere of an inverse source problem which is ill-posed in the sense of Hadamard. Through some priori assumption, we present the error estimates between the regularized and exact solutions.


Sign in / Sign up

Export Citation Format

Share Document