positive anomaly
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 59)

H-INDEX

23
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Sabina Dołęgowska ◽  
Agnieszka Gałuszka ◽  
Zdzisław M. Migaszewski ◽  
Karina Krzciuk

Abstract Background and aim The presence of chlorides in soils, e.g., from de-icing salts may change metal availability to plants. Methods To assess the role of de-icing chlorides on bioavailability of metals, the samples of the rhizosphere soils, roots and shoots of Juncus effusus L. were collected monthly from April to June of 2019 in the vicinity of roads and analyzed for trace (Ag, Cd, Co, Cu, Pb, Zn) and rare earth elements (from La to Lu). Results Concentrations of Cl− were distinctly higher in the shoots than in the roots. Apart from Cd, the concentration sequence of the other metals was as follows: rhizosphere soils>roots>shoots. The bioaccumulation and translocation factors indicated that Cd was the most preferably transported to the shoots as opposed to Ag, Co, Pb and REEs that showed a very low translocation potential. Negative correlations, which were noted between Cu and Co in the shoots and Cl− in soils, revealed their role in salinity stress alleviation. All soil samples showed a positive anomaly of Ce and a negative anomaly of Eu, whereas the shoots showed in turn a negative anomaly of Ce and a distinct positive anomaly of Eu. The lowest salinity factors (K/Na, Ca/Na) of the shoots resulted from an increase of salinity in J. effusus by higher sodium concentrations derived from de-icing NaCl. Conclusions De-icing agents may change the uptake of other elements. In natural habitats, the factors affecting this process include: type of element, soil metal concentrations and interactions, and individual plant features.


Author(s):  
Shraddha Yadav

Abstract: Rainfall variability has a substantial impact on water supplies, agricultural output, and, as a result, the economy. It examines the historical spatiotemporal variability and trend of rainfall on Jharkhand's annual and seasonal time series state over a 60-year period (1954–2013). The goal of this study was to find trends in long and short-term changes in rainfall amounts in the Jharkhand region at various spatial scales. With the help of the wavelet technique, we were able to determine the periodicity of rainfall over time and identify active and break days in the monsoon season. When the OLR positive anomaly increases, rainfall decreases (Break days), and when the OLR negative anomaly increases, rainfall increases (Active days). The Indian summer monsoon extreme is also strongly linked to the Equatorial Indian Ocean Oscillation (EQUINOO), which is based on surface zonal wind across the central equatorial Indian Ocean. Because the Bay of Bengal is next to Jharkhand, local disturbances or cyclonic events are also discovered and their impact on rainfall is investigated. Keywords: Rainfall, ENSO, Wavelet Transform, Active and Break days, Cyclone, Climate Change.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3565
Author(s):  
Arindam Chowdhury ◽  
Tomáš Kroczek ◽  
Sunil Kumar De ◽  
Vít Vilímek ◽  
Milap Chand Sharma ◽  
...  

The Sikkim Himalayan glaciers and glacial lakes are affected by climate change like other parts of the Himalayas. As a result of this climate variability in the Sikkim Himalaya, a detailed study of the Gurudongmar lake complex (GLC) evolution and outburst susceptibility assessment is required. Glacial lake volume estimation and lake outburst susceptibility assessment were carried out to reveal different characteristics for all four lakes (GL-1, GL-2, GL-3, and GL-4) from the lake complex. Each of these lakes has a moderate to very high potential to outburst. As the dam of GL-1 provides no retention capacity, there is a very high potential of a combined effect with the sudden failure of the moraine-dams of GL-2 or GL-3 located upstream. Temporal analysis of GLC using optical remote sensing data and in-field investigations revealed a rapidly increasing total lake area by ~74 ± 3%, with an expansion rate of +0.03 ± 0.002 km2 a−1 between 1962 and 2018 due to climate change and ongoing glacier retreat. The overall lake area expansion rates are dependent on climate-driven factors, and constantly increasing average air temperature is responsible for the enlargement of the lake areas. Simultaneously, changes in GLC expansion velocity are driven by changes in the total amount of precipitation. The deficit in precipitation probably triggered the initial higher rate from 1962 to 1988 during the winter and spring seasons. The post-1990s positive anomaly in precipitation might have reduced the rate of the glacial lake area expansion considerably.


Author(s):  
R. L. Thompson ◽  
C. D. Groot Zwaaftink ◽  
D. Brunner ◽  
A. Tsuruta ◽  
T. Aalto ◽  
...  

The effect of the 2018 extreme meteorological conditions in Europe on methane (CH 4 ) emissions is examined using estimates from four atmospheric inversions calculated for the period 2005–2018. For most of Europe, we find no anomaly in 2018 compared to the 2005–2018 mean. However, we find a positive anomaly for the Netherlands in April, which coincided with positive temperature and soil moisture anomalies suggesting an increase in biogenic sources. We also find a negative anomaly for the Netherlands for September–October, which coincided with a negative anomaly in soil moisture, suggesting a decrease in soil sources. In addition, we find a positive anomaly for Serbia in spring, summer and autumn, which coincided with increases in temperature and soil moisture, again suggestive of changes in biogenic sources, and the annual emission for 2018 was 33 ± 38% higher than the 2005–2017 mean. These results indicate that CH 4 emissions from areas where the natural source is thought to be relatively small can still vary due to meteorological conditions. At the European scale though, the degree of variability over 2005–2018 was small, and there was negligible impact on the annual CH 4 emissions in 2018 despite the extreme meteorological conditions. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.


Author(s):  
Ning Zeng ◽  
Pengfei Han ◽  
Zhiqiang Liu ◽  
Di Liu ◽  
Tomohiro Oda ◽  
...  

Abstract The world-wide lockdown in response to the COVID-19 pandemic in year 2020 led to economic slowdown and large reduction in fossil fuel CO2 emissions, but it is unclear how much it would slow the increasing trend of atmospheric CO2 concentration, the main driver of climate change, and whether this impact can be observed in light of large biosphere and weather variabilities. We used a state-of-the-art atmospheric transport model to simulate CO2, driven by a new daily fossil fuel emissions dataset and hourly biospheric fluxes from a carbon cycle model forced with observed climate variability. Our results show 0.21 ppm decrease in atmospheric column CO2 anomaly in the Northern Hemisphere latitude band 0-45°N (NH45) in March 2020, and an average of 0.14 ppm for the period of February-April 2020, the largest in the last 10 years. A similar decrease was observed by the carbon satellite GOSAT. Using model sensitivity experiments, we further found that COVID and weather variability are the major contributors of this CO2 drawdown, and the biosphere gave a small positive anomaly. Measurements at marine boundary layer stations such as Hawaii exhibits 1-2 ppm anomalies, mostly due to weather and the biosphere. At city scale, on-road CO2 enhancement measured in Beijing shows reduction of 20-30 ppm, consistent with drastically reduced traffic during COVID lockdown. A stepwise drop of 20 ppm at the city-wide lockdown was observed in the city of Chengdu. The ability of our current carbon monitoring systems in detecting the small and short-lasting COVID signal on the background of fossil fuel CO2 accumulated over the last two centuries is encouraging. The COVID-19 pandemic is an unintended experiment. Its impact suggests that to keep atmospheric CO2 at a climate-safe level will require sustained effort of similar magnitude and improved accuracy and expanded spatiotemporal coverage of our monitoring systems.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dimitar Ouzounov ◽  
Sergey Pulinets ◽  
Dmitry Davidenko ◽  
Alexandr Rozhnoi ◽  
Maria Solovieva ◽  
...  

We analyze retrospectively/prospectively the transient variations of six different physical parameters in the atmosphere/ionosphere during the M7.8 and M7.3 earthquakes in Nepal, namely: 1) outgoing longwave radiation (OLR) at the top of the atmosphere (TOA); 2) GPS/TEC; 3) the very-low-frequency (VLF/LF) signals at the receiving stations in Bishkek (Kyrgyzstan) and Varanasi (India); 4) Radon observations; 5) Atmospheric chemical potential from assimilation models; and; 6) Air Temperature from NOAA ground stations. We found that in mid-March 2015, there was a rapid increase in the radiation from the atmosphere observed by satellites. This anomaly was located close to the future M7.8 epicenter and reached a maximum on April 21–22. The GPS/TEC data analysis indicated an increase and variation in electron density, reaching a maximum value during April 22–24. A strong negative TEC anomaly in the crest of EIA (Equatorial Ionospheric Anomaly) occurred on April 21, and a strong positive anomaly was recorded on April 24, 2015. The behavior of VLF-LF waves along NWC-Bishkek and JJY-Varanasi paths has shown abnormal behavior during April 21–23, several days before the first, stronger earthquake. Our continuous satellite OLR analysis revealed this new strong anomaly on May 3, which was why we anticipated another major event in the area. On May 12, 2015, an M7.3 earthquake occurred. Our results show coherence between the appearance of these pre-earthquake transient’s effects in the atmosphere and ionosphere (with a short time-lag, from hours up to a few days) and the occurrence of the 2015 M7.8 and M7.3 events. The spatial characteristics of the pre-earthquake anomalies were associated with a large area but inside the preparation region estimated by Dobrovolsky-Bowman. The pre-earthquake nature of the signals in the atmosphere and ionosphere was revealed by simultaneous analysis of satellite, GPS/TEC, and VLF/LF and suggest that they follow a general temporal-spatial evolution pattern that has been seen in other large earthquakes worldwide.


2021 ◽  
Vol 13 (21) ◽  
pp. 4474
Author(s):  
Beependra Singh ◽  
Chockalingam Jeganathan ◽  
Virendra Singh Rathore ◽  
Mukunda Dev Behera ◽  
Chandra Prakash Singh ◽  
...  

Understanding the spatio-temporal pattern of natural vegetation helps decoding the responses to climate change and interpretation on forest resilience. Satellite remote sensing based data products, by virtue of their synoptic and repetitive coverage, offer to study the correlation and lag effects of rainfall on forest growth in a relatively longer time scale. We selected central India as the study site. It accommodates tropical natural vegetation of varied forest types such as moist and dry deciduous and evergreen and semi-evergreen forests that largely depend on the southwest monsoon. We used the MODIS derived NDVI and CHIRPS based rainfall datasets from 2001 to 2018 in order to analyze NDVI and rainfall trend by using Sen’s slope and standard anomalies. The study observed a decreasing rainfall trend over 41% of the forests, while the rest of the forest area (59%) demonstrated an increase in rainfall. Furthermore, the study estimated drought conditions during 2002, 2004, 2009, 2014 and 2015 for 98.2%, 92.8%, 89.6%, 90.1% and 95.8% of the forest area, respectively; and surplus rainfall during 2003, 2005, 2007, 2011, 2013 and 2016 for 69.5%, 63.9%, 71.97%, 70.35%, 94.79% and 69.86% of the forest area, respectively. Hence, in the extreme dry year (2002), 93% of the forest area showed a negative anomaly, while in the extreme wet year (2013), 89% of forest cover demonstrated a positive anomaly in central India. The long-term vegetation trend analysis revealed that most of the forested area (>80%) has a greening trend in central India. When we considered annual mean NDVI, the greening and browning trends were observed over at 88.65% and 11.35% of the forested area at 250 m resolution and over 93.01% and 6.99% of the area at 5 km resolution. When we considered the peak-growth period mean NDVI, the greening and browning trends were as follows: 81.97% and 18.03% at 250 m and 88.90% and 11.10% at 5 km, respectively. The relative variability in rainfall and vegetation growth at five yearly epochs revealed that the first epoch (2001–2005) was the driest, while the third epoch (2011–2015) was the wettest, corresponding to the lowest vegetation vigour in the first epoch and the highest in the third epoch during the past two decades. The study reaffirms that rainfall is the key climate variable in the tropics regulating the growth of natural vegetation, and the central Indian forests are dominantly resilient to rainfall variation.


2021 ◽  
Author(s):  
Yumi Cha ◽  
JaeWon Choi ◽  
Eung-Sup Kim ◽  
Joong-Bae Ahn

AbstractThe South Asian high (SAH) index was defined using the 200 hPa geopotential height for 1973–2019. Of the movements of the SAH center in the north–south, east–west, northwest-southeast, and southwest-northeast directions, the movements in the northwest-southeast direction showed the highest positive correlation with heatwave days (HWDs) in South Korea. Thirteen years with the highest values in the northwestward shift of the SAH (positive SAH years) and 13 years with the highest values in the southeastward shift of the SAH (negative SAH years) were selected from a time series of SAH indices from which the linear trend was removed, and the differences between these two groups were analyzed. An analysis of vertical meridional circulation averaged along 120°–130° E showed that in the latitude zones containing Korea, anomalous downward flows with anomalous high pressures formed in the entire troposphere and coincided with a positive anomaly of air temperature and specific humidity. An analysis of stream flows and geopotential heights showed that in the positive SAH years, anomalous anticyclones developed in Korea, the North Pacific, North America, Western Europe, and the Iranian Plateau. These anticyclones had the wavenumber-5 pattern and showed more distinct barotropic vertical structures at higher altitudes, which resembled the circumglobal teleconnection (CGT) pattern. The maintenance of CGT depends on the interaction between the CGT circulation and the Indian summer monsoon (ISM), which has a major influence on the mid-latitude atmosphere. Strengthening of the ISM results in the formation of upper-level anomalous anticyclones in the northwestern Iranian Plateau and produces continuous downstream cells along the waveguide due to the Rossby wave dispersion. When diabatic heating by Indian summer monsoon precipitation is strengthened, the SAH is strengthened to the northwest of India, and a positive CGT pattern is formed. As a result, anomalous anticyclones formed in all layers of the Korean troposphere, resulting in heatwaves, tropical nights, and droughts exacerbated in South Korea.


2021 ◽  
Vol 880 (1) ◽  
pp. 012007
Author(s):  
Chia Jing Hwee ◽  
Farouq Jamil ◽  
Akhmal Sidek ◽  
Zaidi Jaafar ◽  
Radzuan Junin ◽  
...  

Abstract The aim of gravity survey is to assist in the detection and delineation of subsurface geological features such as salt domes and faults. In this study, free air anomaly (FAA) data was adopted for mapping and modelling process to delineate subsurface geological features and basement depth in Malay Basin. FAA is the measured gravity anomaly after a free air correction is applied, and it is used for elevation correction. The data of FAA in this study is obtained from Earth Gravitational Model (EGM) 2008 released by the National Geospatial-Intelligence Agency (NGA)-EGM Development Team. Oasis Montaj software was used in the mapping and modelling process whereby the base map which constructed by the Oasis Montaj is used to form the FAA map of Malay Basin. Typically, the positive anomaly is associated with the high-density intrusion at the base of the crust, while in contrast (negative anomaly), it is related to the sedimentary basin in the upper crust. On top of that, the regional-residual anomaly, total horizontal derivative (THD) and 3D Euler Deconvolution enhanced maps were produced and interpreted to acquire comprehensive insight of subsurface geological features. To conclude, this study showed 5% deviation as compared to previous reported works and the deepest basement depth encountered is 14.5 km.


2021 ◽  
Author(s):  
Ko Tsuchida ◽  
Takashi Mochizuki ◽  
Ryuichi Kawamura ◽  
Tetsuya Kawano

Abstract The climate feedback parameter is a useful indicator for estimating climate sensitivity relating to anthropogenic forcing. This study defines a new feedback parameter, the Perturbational Feedback Parameter (PFP), and the impacts of internally-generated climate variations are clarified using the MIROC piControl simulation. PFP values are found to vary significantly on interdecadal timescales. The equatorial sea surface temperature (SST) has a positive anomaly in the eastern Pacific and a negative anomaly in the western Pacific, and the thermocline tilts more gently than usual when the PFP is large. The statistical properties of the interannual fluctuations also simultaneously vary, and they correspond to the background state. For example, there is an increase in the El Niño Southern Oscillation (ENSO) amplitude relative to the global mean surface temperature rise, and the equatorial high SST more effectively contributes to the southward shift of the Intertropical Convergence Zone (ITCZ). In addition, a decadal fluctuation that dominates over the extratropical northern Pacific also plays an important role in PFP variations. These fluctuations on broad timescales cooperatively induce increases in lower clouds within the subtropics by strengthening the descending flow and static stability, and the consequential net downward radiation flux change through increases in reflection enhances the PFP. In summary, internal changes in both tropical and extratropical variability corresponding to the background state control the strength of the climate feedback on interdecadal timescales.


Sign in / Sign up

Export Citation Format

Share Document