scholarly journals Elliptic Multizetas and the Elliptic Double Shuffle Relations

Author(s):  
Pierre Lochak ◽  
Nils Matthes ◽  
Leila Schneps

Abstract We define an elliptic generating series whose coefficients, the elliptic multizetas, are related to the elliptic analogues of multiple zeta values introduced by Enriquez as the coefficients of his elliptic associator; both sets of coefficients lie in $\mathcal{O}({{\mathfrak{H}}})$, the ring of functions on the Poincaré upper half-plane ${{\mathfrak{H}}}$. The elliptic multizetas generate a ${{\mathbb{Q}}}$-algebra ${{\mathcal{E}}}$, which is an elliptic analogue of the algebra of multiple zeta values. Working modulo $2\pi i$, we show that the algebra ${{\mathcal{E}}}$ decomposes into a geometric and an arithmetic part and study the precise relationship between the elliptic generating series and the elliptic associator defined by Enriquez. We show that the elliptic multizetas satisfy a double shuffle type family of algebraic relations similar to the double shuffle relations satisfied by multiple zeta values. We prove that these elliptic double shuffle relations give all algebraic relations among elliptic multizetas if (1) the classical double shuffle relations give all algebraic relations among multiple zeta values and (2) the elliptic double shuffle Lie algebra has a certain natural semi-direct product structure analogous to that established by Enriquez for the elliptic Grothendieck–Teichmüller Lie algebra.

2017 ◽  
Vol 5 ◽  
Author(s):  
FRANCIS BROWN

This paper draws connections between the double shuffle equations and structure of associators; Hain and Matsumoto’s universal mixed elliptic motives; and the Rankin–Selberg method for modular forms for $\text{SL}_{2}(\mathbb{Z})$. We write down explicit formulae for zeta elements $\unicode[STIX]{x1D70E}_{2n-1}$ (generators of the Tannaka Lie algebra of the category of mixed Tate motives over $\mathbb{Z}$) in depths up to four, give applications to the Broadhurst–Kreimer conjecture, and solve the double shuffle equations for multiple zeta values in depths two and three.


2018 ◽  
Vol 100 (1) ◽  
pp. 34-40
Author(s):  
MASANOBU KANEKO ◽  
KOJIRO OYAMA ◽  
SHINGO SAITO

We establish finite analogues of the identities known as the Aoki–Ohno relation and the Le–Murakami relation in the theory of multiple zeta values. We use an explicit form of a generating series given by Aoki and Ohno.


2001 ◽  
Vol 10 (07) ◽  
pp. 983-997
Author(s):  
Kentaro Ihara ◽  
Takashi Takamuki

In this paper we obtain a family of relations among the multiple zeta values by calculating the quantum [Formula: see text]-invariant of a framed oriented link, where Γ1,0 is the 7-dimensional irreducible representation of the exceptional simple Lie algebra [Formula: see text] over [Formula: see text].


2021 ◽  
Vol 157 (3) ◽  
pp. 529-572
Author(s):  
Francis Brown

We study the depth filtration on multiple zeta values, on the motivic Galois group of mixed Tate motives over $\mathbb {Z}$ and on the Grothendieck–Teichmüller group, and its relation to modular forms. Using period polynomials for cusp forms for $\mathrm {SL} _2(\mathbb {Z})$, we construct an explicit Lie algebra of solutions to the linearized double shuffle equations, which gives a conjectural description of all identities between multiple zeta values modulo $\zeta (2)$ and modulo lower depth. We formulate a single conjecture about the homology of this Lie algebra which implies conjectures due to Broadhurst and Kreimer, Racinet, Zagier, and Drinfeld on the structure of multiple zeta values and on the Grothendieck–Teichmüller Lie algebra.


2020 ◽  
Vol 8 ◽  
Author(s):  
FRANCIS BROWN

We introduce a new family of real-analytic modular forms on the upper-half plane. They are arguably the simplest class of ‘mixed’ versions of modular forms of level one and are constructed out of real and imaginary parts of iterated integrals of holomorphic Eisenstein series. They form an algebra of functions satisfying many properties analogous to classical holomorphic modular forms. In particular, they admit expansions in $q,\overline{q}$ and $\log |q|$ involving only rational numbers and single-valued multiple zeta values. The first nontrivial functions in this class are real-analytic Eisenstein series.


10.37236/3923 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Shifeng Ding ◽  
Lihua Feng ◽  
Weijun Liu

Let $\zeta(s_1,s_2,\cdots,s_k;\alpha)$ be the multiple Hurwitz zeta function. Given two positive integers $k$ and $n$ with $k\leq n$, let $E(2n, k;\alpha)$ be the sum of all multiple zeta values with even arguments whose weight is $2n$ and whose depth is $k$.  In this note we present some generating series for the numbers $E(2n,k;\alpha)$.


2020 ◽  
Vol 14 (10) ◽  
pp. 2685-2712
Author(s):  
Zhongyu Jin ◽  
Jiangtao Li

Sign in / Sign up

Export Citation Format

Share Document