ring of functions
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Pierre Lochak ◽  
Nils Matthes ◽  
Leila Schneps

Abstract We define an elliptic generating series whose coefficients, the elliptic multizetas, are related to the elliptic analogues of multiple zeta values introduced by Enriquez as the coefficients of his elliptic associator; both sets of coefficients lie in $\mathcal{O}({{\mathfrak{H}}})$, the ring of functions on the Poincaré upper half-plane ${{\mathfrak{H}}}$. The elliptic multizetas generate a ${{\mathbb{Q}}}$-algebra ${{\mathcal{E}}}$, which is an elliptic analogue of the algebra of multiple zeta values. Working modulo $2\pi i$, we show that the algebra ${{\mathcal{E}}}$ decomposes into a geometric and an arithmetic part and study the precise relationship between the elliptic generating series and the elliptic associator defined by Enriquez. We show that the elliptic multizetas satisfy a double shuffle type family of algebraic relations similar to the double shuffle relations satisfied by multiple zeta values. We prove that these elliptic double shuffle relations give all algebraic relations among elliptic multizetas if (1) the classical double shuffle relations give all algebraic relations among multiple zeta values and (2) the elliptic double shuffle Lie algebra has a certain natural semi-direct product structure analogous to that established by Enriquez for the elliptic Grothendieck–Teichmüller Lie algebra.


2020 ◽  
Vol 20 (03) ◽  
pp. 2050014
Author(s):  
Luck Darnière ◽  
Marcus Tressl

Let [Formula: see text] be an expansion of either an ordered field [Formula: see text], or a valued field [Formula: see text]. Given a definable set [Formula: see text] let [Formula: see text] be the ring of continuous definable functions from [Formula: see text] to [Formula: see text]. Under very mild assumptions on the geometry of [Formula: see text] and on the structure [Formula: see text], in particular when [Formula: see text] is [Formula: see text]-minimal or [Formula: see text]-minimal, or an expansion of a local field, we prove that the ring of integers [Formula: see text] is interpretable in [Formula: see text]. If [Formula: see text] is [Formula: see text]-minimal and [Formula: see text] is definably connected of pure dimension [Formula: see text], then [Formula: see text] defines the subring [Formula: see text]. If [Formula: see text] is [Formula: see text]-minimal and [Formula: see text] has no isolated points, then there is a discrete ring [Formula: see text] contained in [Formula: see text] and naturally isomorphic to [Formula: see text], such that the ring of functions [Formula: see text] which take values in [Formula: see text] is definable in [Formula: see text].


1996 ◽  
Vol 53 (3) ◽  
pp. 401-411
Author(s):  
K.D. Magill

For any topological near-ring (which is not a ring) whose additive group is the additive group of real numbers, we investigate the near-ring of all continuous functions, under the pointwise operations, from a compact Hausdorff space into that near-ring. Specifically, we determine all the homomorphisms from one such near-ring of functions to another and we show that within a rather extensive class of spaces, the endomorphism semigroup of the near-ring of functions completely determines the topological structure of the space.


1992 ◽  
Vol 46 (3) ◽  
pp. 449-458 ◽  
Author(s):  
H. Linda Byun ◽  
Lothar Redlin ◽  
Saleem Watson

It is known that the maximal ideals in the rings C(X) and C*(X) of continuous and bounded continuous functions on X, respectively, are in one-to-one correspondence with βX. We have shown previously that the same is true for any ring A(X) between C(X) and C*(X). Here we consider the problem for rings A(X) contained in C*(X) which are complete rings of functions (that is, they contain the constants, separate points and closed sets, and are uniformly closed). For every noninvertible f ∈ A(X), we define a z–filter ZA(f) on X which, in a sense, provides a measure of where f is ‘locally invertible’. We show that the map ZA generates a correspondence between ideals of A(X) and z–filters on X. Using this correspondence, we construct a unique compactification of X for every complete ring of functions. Each such compactification is explicitly identified as a quotient of βX. In fact, every compactification of X arises from some complete ring of functions A(X) via this construction. We also describe the intersections of the free ideals and of the free maximal ideals in complete rings of functions.


1973 ◽  
Vol 28 (5) ◽  
pp. 87-132 ◽  
Author(s):  
A M Vershik ◽  
I M Gel'fand ◽  
M I Graev
Keyword(s):  

1969 ◽  
Vol 10 (1-2) ◽  
pp. 204-206 ◽  
Author(s):  
Stewart M. Robinson

In [2] we proved that if X admits a complete uniform structure, the intersection of the free maximal ideals in C(x) is precisely Ck(X), the ring of functions with compact support. In the present paper we are able to sharpen this result somewhat and give necessary and sufficient conditions on a space X so that this conclusion holds. Both our previous result and that of Kohls for p-spaces follow as special cases of our theorem.


Sign in / Sign up

Export Citation Format

Share Document