scholarly journals Nodal Sets of Steklov Eigenfunctions near the Boundary: Inner Radius Estimates

Author(s):  
Stefano Decio

Abstract We show that Steklov eigenfunctions in a bounded Lipschitz domain have wavelength dense nodal sets near the boundary, in contrast to what can happen deep inside the domain. Conversely, in a 2D Lipschitz domain $\Omega $, we prove that any nodal domain of a Steklov eigenfunction contains a half-ball centered at $\partial \Omega $ of radius $c_{\Omega }/{\lambda }$.

2008 ◽  
Vol 51 (2) ◽  
pp. 249-260 ◽  
Author(s):  
Dan Mangoubi

AbstractLet M be a closed Riemannian manifold. We consider the inner radius of a nodal domain for a large eigenvalue λ. We give upper and lower bounds on the inner radius of the type C/λα(log λ)β. Our proof is based on a local behavior of eigenfunctions discovered by Donnelly and Fefferman and a Poincaré type inequality proved by Maz’ya. Sharp lower bounds are known only in dimension two. We give an account of this case too.


Author(s):  
Patrizio Neff

In this paper we prove a Korn-type inequality with non-constant coefficients which arises from applications in elasto-plasticity at large deformations. More precisely, let Ω ⊂ R3 be a bounded Lipschitz domain and let Γ ⊂ ∂Ω be a smooth part of the boundary with non-vanishing two-dimensional Lebesgue measure. Define and let be given with det Fp(x) ≥ μ+ > 0. Moreover, suppose that Rot . Then Clearly, this result generalizes the classical Korn's first inequality which is just our result with Fp = 11. With slight modifications, we are also able to treat forms of the type


2020 ◽  
Vol 26 ◽  
pp. 42 ◽  
Author(s):  
Mahamadi Warma ◽  
Sebastián Zamorano

We make a complete analysis of the controllability properties from the exterior of the (possible) strong damping wave equation associated with the fractional Laplace operator subject to the non-homogeneous Dirichlet type exterior condition. In the first part, we show that if 0 <s< 1, Ω ⊂ ℝN(N≥ 1) is a bounded Lipschitz domain and the parameterδ> 0, then there is no control functiongsuch that the following system\begin{align} u_{1,n}+ u_{0,n}\widetilde{\lambda}_{n}^++ \delta u_{0,n}\lambda_{n}=\int_0^{T}\int_{\Omc}(g(x,t)+\delta g_t(x,t))e^{-\widetilde{\lambda}_{n}^+ t}\mathcal{N}_{s}\varphi_{n}(x)\d x\d t,\label{39}\\ u_{1,n}+ u_{0,n}\widetilde{\lambda}_{n}^- +\delta u_{0,n}\lambda_{n}=\int_0^{T}\int_{\Omc}(g(x,t)+\delta g_t(x,t))e^{-\widetilde{\lambda}_{n}^- t}\mathcal{N}_{s}\varphi_{n}(x)\d x\d t,\label{40} \end{align}is exact or null controllable at timeT> 0. In the second part, we prove that for everyδ≥ 0 and 0 <s< 1, the system is indeed approximately controllable for anyT> 0 andg∈D(O× (0,T)), whereO⊂ ℝN\ Ω is any non-empty open set.


2005 ◽  
Vol 2005 (9) ◽  
pp. 1461-1472 ◽  
Author(s):  
Mohamed El Kadiri ◽  
Sabah Haddad

Soit(Ω,ℋ)un espace biharmonique fort au sens de Smyrnelis dont les espaces harmoniques associés sont des espaces de Brelot qui vérifient l'axiome de proportionnalité. On montre que s'il existe un coupleℋ-harmonique>0surΩ, alors lénsemble des points minimaux de la frontière de Martin biharmonique deΩqui ne sont pas les pôles de couples biharmoniques minimaux est négiligeable dans un sens que l'on précisera. Dans le cas classique d'un domaine lipschitzien borné deℝn, nous montrons que cet ensemble est vide.Let(Ω,ℋ)be a strong biharmonic space of Smyrnelis such that the harmonic spaces associeted are Brelot spaces satisfying the axiom of proportionnality. We prove that if there exists a biharmonic pair greater than0onΩ, then the set of minimal points of the biharmonic Martin boundary ofΩ, that are not the poles of minimal biharmonic pairs, is negligible in some meaning that we will precise. For the classical case of a bounded Lipschitz domain ofℝn, we prove that this set is empty.


2016 ◽  
Vol 144 (11) ◽  
pp. 4715-4722 ◽  
Author(s):  
Christopher D. Sogge ◽  
Xing Wang ◽  
Jiuyi Zhu

2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaming Chen ◽  
Renjin Jiang ◽  
Dachun Yang

AbstractLet Ω ⊂ Rn be a strongly Lipschitz domain. In this article, the authors study Hardy spaces, Hpr (Ω)and Hpz (Ω), and Hardy-Sobolev spaces, H1,pr (Ω) and H1,pz,0 (Ω) on , for p ∈ ( n/n+1, 1]. The authors establish grand maximal function characterizations of these spaces. As applications, the authors obtain some div-curl lemmas in these settings and, when is a bounded Lipschitz domain, the authors prove that the divergence equation div u = f for f ∈ Hpz (Ω) is solvable in H1,pz,0 (Ω) with suitable regularity estimates.


2021 ◽  
Vol 66 (1) ◽  
pp. 85-94
Author(s):  
Luminita Barbu

"The eigenvalue problem $$-\mbox{div}~\Big(\frac{1}{p}\nabla_\xi \big(F^p\big (\nabla u)\Big)=\lambda a(x) \mid u\mid ^{q-2}u,$$ with $q\in (1, \infty),~ p\in \Big(\frac{Nq}{N+q-1}, \infty\Big),~ p\neq q,$ subject to Steklov-like boundary condition, $$F^{p-1}(\nabla u)\nabla _\xi F (\nabla u)\cdot \nu=\lambda b(x) \mid u\mid ^{q-2}u$$ is investigated on a bounded Lipschitz domain $\Omega\subset \mathbb{R}^ N,~N\geq 2$. Here, $F$ stands for a $C^2(\mathbb{R}^N\setminus \{0\})$ norm and $a\in L^{\infty}(\Omega),~ b\in L^{\infty}(\partial\Omega)$ are given nonnegative functions satisfying \[ \int_\Omega a~dx+\int_{\partial\Omega} b~d\sigma >0. \] Using appropriate variational methods, we are able to prove that the set of eigenvalues of this problem is the interval $[0, \infty)$."


Sign in / Sign up

Export Citation Format

Share Document