scholarly journals A Sharp Rearrangement Principle in Fourier Space and Symmetry Results for PDEs with Arbitrary Order

Author(s):  
Enno Lenzmann ◽  
Jérémy Sok

Abstract We prove sharp inequalities for the symmetric-decreasing rearrangement in Fourier space of functions in $\mathbb{R}^d$. Our main result can be applied to a general class of (pseudo-)differential operators in $\mathbb{R}^d$ of arbitrary order with radial Fourier multipliers. For example, we can take any positive power of the Laplacian $(-\Delta )^s$ with $s> 0$ and, in particular, any polyharmonic operator $(-\Delta )^m$ with integer $m \geqslant 1$. As applications, we prove radial symmetry and real-valuedness (up to trivial symmetries) of optimizers for (1) Gagliardo–Nirenberg inequalities with derivatives of arbitrary order, (2) ground states for bi- and polyharmonic nonlinear Schrödinger equations (NLS), and (3) Adams–Moser–Trudinger type inequalities for $H^{d/2}(\mathbb{R}^d)$ in any dimension $d \geqslant 1$. As a technical key result, we solve a phase retrieval problem for the Fourier transform in $\mathbb{R}^d$. To achieve this, we classify the case of equality in the corresponding Hardy–Littlewood majorant problem for the Fourier transform in $\mathbb{R}^d$.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lung-Hui Chen

Abstract In this paper, we discuss how to partially determine the Fourier transform F ⁢ ( z ) = ∫ - 1 1 f ⁢ ( t ) ⁢ e i ⁢ z ⁢ t ⁢ 𝑑 t , z ∈ ℂ , F(z)=\int_{-1}^{1}f(t)e^{izt}\,dt,\quad z\in\mathbb{C}, given the data | F ⁢ ( z ) | {\lvert F(z)\rvert} or arg ⁡ F ⁢ ( z ) {\arg F(z)} for z ∈ ℝ {z\in\mathbb{R}} . Initially, we assume [ - 1 , 1 ] {[-1,1]} to be the convex hull of the support of the signal f. We start with reviewing the computation of the indicator function and indicator diagram of a finite-typed complex-valued entire function, and then connect to the spectral invariant of F ⁢ ( z ) {F(z)} . Then we focus to derive the unimodular part of the entire function up to certain non-uniqueness. We elaborate on the translation of the signal including the non-uniqueness associates of the Fourier transform. We show that the phase retrieval and magnitude retrieval are conjugate problems in the scattering theory of waves.


2021 ◽  
Vol 13 (2) ◽  
pp. 326-339
Author(s):  
H.H. Bang ◽  
V.N. Huy

In this paper, we investigate the behavior of the sequence of $L^\Phi$-norm of functions, which are generated by differential and integral operators through their spectra (the support of the Fourier transform of a function $f$ is called its spectrum and denoted by sp$(f)$). With $Q$ being a polynomial, we introduce the notion of $Q$-primitives, which will return to the notion of primitives if ${Q}(x)= x$, and study the behavior of the sequence of norm of $Q$-primitives of functions in Orlicz space $L^\Phi(\mathbb R^n)$. We have the following main result: let $\Phi $ be an arbitrary Young function, ${Q}({\bf x} )$ be a polynomial and $(\mathcal{Q}^mf)_{m=0}^\infty \subset L^\Phi(\mathbb R^n)$ satisfies $\mathcal{Q}^0f=f, {Q}(D)\mathcal{Q}^{m+1}f=\mathcal{Q}^mf$ for $m\in\mathbb{Z}_+$. Assume that sp$(f)$ is compact and $sp(\mathcal{Q}^{m}f)= sp(f)$ for all $m\in \mathbb{Z}_+.$ Then $$ \lim\limits_{m\to \infty } \|\mathcal{Q}^m f\|_{\Phi}^{1/m}= \sup\limits_{{\bf x} \in sp(f)} \bigl|1/ {Q}({\bf x}) \bigl|. $$ The corresponding results for functions generated by differential operators and integral operators are also given.


Filomat ◽  
2018 ◽  
Vol 32 (3) ◽  
pp. 975-984 ◽  
Author(s):  
Vladimir Vasilyev

We introduce discrete pseudo-differential operators in appropriate discrete Sobolev-Slobodetskii spaces. Using discrete Fourier transform and factorization concept we study invertibility of such operators in some discrete spaces. Some examples for discrete Calderon-Zygmund operators and difference operators are considered.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Wei Peng ◽  
Hongxia Wang

This paper presents the Simulated Annealing Sparse PhAse Recovery (SASPAR) algorithm for reconstructing sparse binary signals from their phaseless magnitudes of the Fourier transform. The greedy strategy version is also proposed for a comparison, which is a parameter-free algorithm. Sufficient numeric simulations indicate that our method is quite effective and suggest the binary model is robust. The SASPAR algorithm seems competitive to the existing methods for its efficiency and high recovery rate even with fewer Fourier measurements.


2014 ◽  
Vol 19 (2-3) ◽  
pp. 7-13
Author(s):  
Przemysław Korohoda ◽  
Joanna Grabska-Chrząstowska ◽  
Jaromir Przybyło

Abstract An algorithm to design the small size 2-D filter masks with arbitrarily selected rotation angle has been proposed. The classical filter mask of size 3 × 3 is obtained from the reference Fourier space characteristics, rotated in the Fourier domain. The efficiency of the suggested method was illustrated with examples based on the Sobel gradient mask and two test images. Comparative computations indicated that the accuracy of the filtering result with use of the small size filters is noticeably better when the filter has been designed with use of the Fourier characteristics rotation than after direct rotation of the mask in the pixel domain.


Sign in / Sign up

Export Citation Format

Share Document