scholarly journals Assessing the enrichment of dietary supplement coverage in the Unified Medical Language System

2020 ◽  
Vol 27 (10) ◽  
pp. 1547-1555 ◽  
Author(s):  
Jake Vasilakes ◽  
Anusha Bompelli ◽  
Jeffrey R Bishop ◽  
Terrence J Adam ◽  
Olivier Bodenreider ◽  
...  

Abstract Objective We sought to assess the need for additional coverage of dietary supplements (DS) in the Unified Medical Language System (UMLS) by investigating (1) the overlap between the integrated DIetary Supplements Knowledge base (iDISK) DS ingredient terminology and the UMLS and (2) the coverage of iDISK and the UMLS over DS mentions in the biomedical literature. Materials and Methods We estimated the overlap between iDISK and the UMLS by mapping iDISK to the UMLS using exact and normalized strings. The coverage of iDISK and the UMLS over DS mentions in the biomedical literature was evaluated via a DS named-entity recognition (NER) task within PubMed abstracts. Results The coverage analysis revealed that only 30% of iDISK terms can be matched to the UMLS, although these cover over 99% of iDISK concepts. A manual review revealed that a majority of the unmatched terms represented new synonyms, rather than lexical variants. For NER, iDISK nearly doubles the precision and achieves a higher F1 score than the UMLS, while maintaining a competitive recall. Discussion While iDISK has significant concept overlap with the UMLS, it contains many novel synonyms. Furthermore, almost 3000 of these overlapping UMLS concepts are missing a DS designation, which could be provided by iDISK. The NER experiments show that the specialization of iDISK is useful for identifying DS mentions. Conclusions Our results show that the DS representation in the UMLS could be enriched by adding DS designations to many concepts and by adding new synonyms.

2017 ◽  
Vol 24 (4) ◽  
pp. 841-844 ◽  
Author(s):  
Dina Demner-Fushman ◽  
Willie J Rogers ◽  
Alan R Aronson

Abstract MetaMap is a widely used named entity recognition tool that identifies concepts from the Unified Medical Language System Metathesaurus in text. This study presents MetaMap Lite, an implementation of some of the basic MetaMap functions in Java. On several collections of biomedical literature and clinical text, MetaMap Lite demonstrated real-time speed and precision, recall, and F1 scores comparable to or exceeding those of MetaMap and other popular biomedical text processing tools, clinical Text Analysis and Knowledge Extraction System (cTAKES) and DNorm.


2021 ◽  
Vol 7 ◽  
pp. e384
Author(s):  
Rigo E. Ramos-Vargas ◽  
Israel Román-Godínez ◽  
Sulema Torres-Ramos

Increased interest in the use of word embeddings, such as word representation, for biomedical named entity recognition (BioNER) has highlighted the need for evaluations that aid in selecting the best word embedding to be used. One common criterion for selecting a word embedding is the type of source from which it is generated; that is, general (e.g., Wikipedia, Common Crawl), or specific (e.g., biomedical literature). Using specific word embeddings for the BioNER task has been strongly recommended, considering that they have provided better coverage and semantic relationships among medical entities. To the best of our knowledge, most studies have focused on improving BioNER task performance by, on the one hand, combining several features extracted from the text (for instance, linguistic, morphological, character embedding, and word embedding itself) and, on the other, testing several state-of-the-art named entity recognition algorithms. The latter, however, do not pay great attention to the influence of the word embeddings, and do not facilitate observing their real impact on the BioNER task. For this reason, the present study evaluates three well-known NER algorithms (CRF, BiLSTM, BiLSTM-CRF) with respect to two corpora (DrugBank and MedLine) using two classic word embeddings, GloVe Common Crawl (of the general type) and Pyysalo PM + PMC (specific), as unique features. Furthermore, three contextualized word embeddings (ELMo, Pooled Flair, and Transformer) are compared in their general and specific versions. The aim is to determine whether general embeddings can perform better than specialized ones on the BioNER task. To this end, four experiments were designed. In the first, we set out to identify the combination of classic word embedding, NER algorithm, and corpus that results in the best performance. The second evaluated the effect of the size of the corpus on performance. The third assessed the semantic cohesiveness of the classic word embeddings and their correlation with respect to several gold standards; while the fourth evaluates the performance of general and specific contextualized word embeddings on the BioNER task. Results show that the classic general word embedding GloVe Common Crawl performed better in the DrugBank corpus, despite having less word coverage and a lower internal semantic relationship than the classic specific word embedding, Pyysalo PM + PMC; while in the contextualized word embeddings the best results are presented in the specific ones. We conclude, therefore, when using classic word embeddings as features on the BioNER task, the general ones could be considered a good option. On the other hand, when using contextualized word embeddings, the specific ones are the best option.


2021 ◽  
Vol 22 (S1) ◽  
Author(s):  
Renzo M. Rivera-Zavala ◽  
Paloma Martínez

Abstract Background The volume of biomedical literature and clinical data is growing at an exponential rate. Therefore, efficient access to data described in unstructured biomedical texts is a crucial task for the biomedical industry and research. Named Entity Recognition (NER) is the first step for information and knowledge acquisition when we deal with unstructured texts. Recent NER approaches use contextualized word representations as input for a downstream classification task. However, distributed word vectors (embeddings) are very limited in Spanish and even more for the biomedical domain. Methods In this work, we develop several biomedical Spanish word representations, and we introduce two Deep Learning approaches for pharmaceutical, chemical, and other biomedical entities recognition in Spanish clinical case texts and biomedical texts, one based on a Bi-STM-CRF model and the other on a BERT-based architecture. Results Several Spanish biomedical embeddigns together with the two deep learning models were evaluated on the PharmaCoNER and CORD-19 datasets. The PharmaCoNER dataset is composed of a set of Spanish clinical cases annotated with drugs, chemical compounds and pharmacological substances; our extended Bi-LSTM-CRF model obtains an F-score of 85.24% on entity identification and classification and the BERT model obtains an F-score of 88.80% . For the entity normalization task, the extended Bi-LSTM-CRF model achieves an F-score of 72.85% and the BERT model achieves 79.97%. The CORD-19 dataset consists of scholarly articles written in English annotated with biomedical concepts such as disorder, species, chemical or drugs, gene and protein, enzyme and anatomy. Bi-LSTM-CRF model and BERT model obtain an F-measure of 78.23% and 78.86% on entity identification and classification, respectively on the CORD-19 dataset. Conclusion These results prove that deep learning models with in-domain knowledge learned from large-scale datasets highly improve named entity recognition performance. Moreover, contextualized representations help to understand complexities and ambiguity inherent to biomedical texts. Embeddings based on word, concepts, senses, etc. other than those for English are required to improve NER tasks in other languages.


Author(s):  
Ginger Tsueng ◽  
Max Nanis ◽  
Jennifer T Fouquier ◽  
Michael Mayers ◽  
Benjamin M Good ◽  
...  

Abstract Motivation Biomedical literature is growing at a rate that outpaces our ability to harness the knowledge contained therein. To mine valuable inferences from the large volume of literature, many researchers use information extraction algorithms to harvest information in biomedical texts. Information extraction is usually accomplished via a combination of manual expert curation and computational methods. Advances in computational methods usually depends on the time-consuming generation of gold standards by a limited number of expert curators. Citizen science is public participation in scientific research. We previously found that citizen scientists are willing and capable of performing named entity recognition of disease mentions in biomedical abstracts, but did not know if this was true with relationship extraction. Results In this paper, we introduce the Relationship Extraction Module of the web-based application Mark2Cure and demonstrate that citizen scientists can perform relationship extraction. We confirm the importance of accurate named entity recognition on user performance of relationship extraction and identify design issues that impacted data quality. We find that the data generated by citizen scientists can be used to identify relationship types not currently available in the Mark2Cure Relationship Extraction Module. We compare the citizen science-generated data with algorithm-mined data and identify ways in which the two approaches may complement one another. We also discuss opportunities for future improvement of this system, as well as the potential synergies between citizen science, manual biocuration, and natural language processing. Availability Mark2Cure platform: https://mark2cure.org. Mark2Cure source code: https://github.com/sulab/mark2cure Data and analysis code for this paper: https://github.com/gtsueng/M2C_rel_nb Supplementary information Supplementary data are available at Bioinformatics online.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Tiago Grego ◽  
Catia Pesquita ◽  
Hugo P. Bastos ◽  
Francisco M. Couto

Chemical entities are ubiquitous through the biomedical literature and the development of text-mining systems that can efficiently identify those entities are required. Due to the lack of available corpora and data resources, the community has focused its efforts in the development of gene and protein named entity recognition systems, but with the release of ChEBI and the availability of an annotated corpus, this task can be addressed. We developed a machine-learning-based method for chemical entity recognition and a lexical-similarity-based method for chemical entity resolution and compared them with Whatizit, a popular-dictionary-based method. Our methods outperformed the dictionary-based method in all tasks, yielding an improvement in F-measure of 20% for the entity recognition task, 2–5% for the entity-resolution task, and 15% for combined entity recognition and resolution tasks.


2016 ◽  
Author(s):  
Ginger Tsueng ◽  
Steven M. Nanis ◽  
Jennifer Fouquier ◽  
Benjamin M Good ◽  
Andrew I Su

I.AbstractBiomedical literature represents one of the largest and fastest growing collections of unstructured biomedical knowledge. Finding critical information buried in the literature can be challenging. In order to extract information from freeflowing text, researchers need to: 1. identify the entities in the text (named entity recognition), 2. apply a standardized vocabulary to these entities (normalization), and 3. identify how entities in the text are related to one another (relationship extraction). Researchers have primarily approached these information extraction tasks through manual expert curation, and computational methods. We have previously demonstrated that named entity recognition (NER) tasks can be crowdsourced to a group of nonexperts via the paid microtask platform, Amazon Mechanical Turk (AMT); and can dramatically reduce the cost and increase the throughput of biocuration efforts. However, given the size of the biomedical literature even information extraction via paid microtask platforms is not scalable. With our web-based application Mark2Cure (http://mark2cure.org), we demonstrate that NER tasks can also be performed by volunteer citizen scientists with high accuracy. We apply metrics from the Zooniverse Matrices of Citizen Science Success and provide the results here to serve as a basis of comparison for other citizen science projects. Further, we discuss design considerations, issues, and the application of analytics for successfully moving a crowdsourcing workflow from a paid microtask platform to a citizen science platform. To our knowledge, this study is the first application of citizen science to a natural language processing task.


Sign in / Sign up

Export Citation Format

Share Document