relationship extraction
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 60)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Baosheng Yin ◽  
Yifei Sun

Abstract As an important part of information extraction, relationship extraction aims to extract the relationships between given entities from natural language text. On the basis of the pre-training model R-BERT, this paper proposes an entity relationship extraction method that integrates entity dependency path and pre-training model, which generates a dependency parse tree by dependency parsing, obtains the dependency path of entity pair via a given entity, and uses entity dependency path to exclude such information as modifier chunks and useless entities in sentences. This model has achieved good F1 value performance on the SemEval2010 Task 8 dataset. Experiments on dataset show that dependency parsing can provide context information for models and improve performance.


2021 ◽  
Author(s):  
Qingwen Tian ◽  
Shixing Zhou ◽  
Yu Cheng ◽  
Jianxia Chen ◽  
Yi Gao ◽  
...  

Knowledge Graph is a semantic network that reveals the relationship between entities, which construction is to describe various entities, concepts and their relationships in the real world. Since knowledge graph can effectively reveal the relationship between the different knowledge items, it has been widely utilized in the intelligent education. In particular, relation extraction is the critical part of knowledge graph and plays a very important role in the construction of knowledge graph. According to the different magnitude of data labeling, entity relationship extraction tasks of deep learning can be divided into two categories: supervised and distant supervised. Supervised learning approaches can extract effective entity relationships. However, these approaches rely on labeled data heavily resulting in the time-consuming and laborconsuming. The distant supervision approach is widely concerned by researchers because it can generate the entity relation extraction automatically. However, the development and application of the distant supervised approach has been seriously hindered due to the noises, lack of information and disequilibrium in the relation extraction tasks. Inspired by the above analysis, the paper proposes a novel curriculum points relationship extraction model based on the distant supervision. In particular, firstly the research of the distant supervised relationship extraction model based on the sentence bag attention mechanism to extract the relationship of curriculum points. Secondly, the research of knowledge graph construction based on the knowledge ontology. Thirdly, the development of curriculum semantic retrieval platform based on Web. Compared with the existing advanced models, the AUC of this system is increased by 14.2%; At the same time, taking "big data processing" course in computer field as an example, the relationship extraction result with F1 value of 88.1% is realized. The experimental results show that the proposed model provides an effective solution for the development and application of knowledge graph in the field of intelligent education.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Morteza Pourreza Shahri ◽  
Indika Kahanda

Abstract Background Identifying human protein-phenotype relationships has attracted researchers in bioinformatics and biomedical natural language processing due to its importance in uncovering rare and complex diseases. Since experimental validation of protein-phenotype associations is prohibitive, automated tools capable of accurately extracting these associations from the biomedical text are in high demand. However, while the manual annotation of protein-phenotype co-mentions required for training such models is highly resource-consuming, extracting millions of unlabeled co-mentions is straightforward. Results In this study, we propose a novel deep semi-supervised ensemble framework that combines deep neural networks, semi-supervised, and ensemble learning for classifying human protein-phenotype co-mentions with the help of unlabeled data. This framework allows the ability to incorporate an extensive collection of unlabeled sentence-level co-mentions of human proteins and phenotypes with a small labeled dataset to enhance overall performance. We develop PPPredSS, a prototype of our proposed semi-supervised framework that combines sophisticated language models, convolutional networks, and recurrent networks. Our experimental results demonstrate that the proposed approach provides a new state-of-the-art performance in classifying human protein-phenotype co-mentions by outperforming other supervised and semi-supervised counterparts. Furthermore, we highlight the utility of PPPredSS in powering a curation assistant system through case studies involving a group of biologists. Conclusions This article presents a novel approach for human protein-phenotype co-mention classification based on deep, semi-supervised, and ensemble learning. The insights and findings from this work have implications for biomedical researchers, biocurators, and the text mining community working on biomedical relationship extraction.


2021 ◽  
Vol 11 (18) ◽  
pp. 8319
Author(s):  
Priyankar Bose ◽  
Sriram Srinivasan ◽  
William C. Sleeman ◽  
Jatinder Palta ◽  
Rishabh Kapoor ◽  
...  

Significant growth in Electronic Health Records (EHR) over the last decade has provided an abundance of clinical text that is mostly unstructured and untapped. This huge amount of clinical text data has motivated the development of new information extraction and text mining techniques. Named Entity Recognition (NER) and Relationship Extraction (RE) are key components of information extraction tasks in the clinical domain. In this paper, we highlight the present status of clinical NER and RE techniques in detail by discussing the existing proposed NLP models for the two tasks and their performances and discuss the current challenges. Our comprehensive survey on clinical NER and RE encompass current challenges, state-of-the-art practices, and future directions in information extraction from clinical text. This is the first attempt to discuss both of these interrelated topics together in the clinical context. We identified many research articles published based on different approaches and looked at applications of these tasks. We also discuss the evaluation metrics that are used in the literature to measure the effectiveness of the two these NLP methods and future research directions.


2021 ◽  
pp. 1-21
Author(s):  
Wenguang Wang ◽  
Yonglin Xu ◽  
Chunhui Du ◽  
Yunwen Chen ◽  
Yijie Wang ◽  
...  

Abstract With the development of entity extraction, relationship extraction, knowledge reasoning, and entity linking, knowledge graph technology has been in full swing in recent years. To better promote the development of knowledge graph, especially in the Chinese language and in the financial industry, we built a high-quality data set, named financial research report knowledge graph (FR2KG), and organized the automated construction of financial knowledge graph evaluation at the 2020 China Knowledge Graph and Semantic Computing Conference (CCKS2020). FR2KG consists of 17,799 entities, 26,798 relationship triples, and 1,328 attribute triples covering 10 entity types, 19 relationship types, and 6 attributes. Participants are required to develop a constructor that will automatically construct a financial knowledge graph based on the FR2KG. In addition, we summarized the technologies for automatically constructing knowledge graphs, and introduced the methods used by the winners and the results of this evaluation.


2021 ◽  
Vol 10 (7) ◽  
pp. 488
Author(s):  
Peng Li ◽  
Dezheng Zhang ◽  
Aziguli Wulamu ◽  
Xin Liu ◽  
Peng Chen

A deep understanding of our visual world is more than an isolated perception on a series of objects, and the relationships between them also contain rich semantic information. Especially for those satellite remote sensing images, the span is so large that the various objects are always of different sizes and complex spatial compositions. Therefore, the recognition of semantic relations is conducive to strengthen the understanding of remote sensing scenes. In this paper, we propose a novel multi-scale semantic fusion network (MSFN). In this framework, dilated convolution is introduced into a graph convolutional network (GCN) based on an attentional mechanism to fuse and refine multi-scale semantic context, which is crucial to strengthen the cognitive ability of our model Besides, based on the mapping between visual features and semantic embeddings, we design a sparse relationship extraction module to remove meaningless connections among entities and improve the efficiency of scene graph generation. Meanwhile, to further promote the research of scene understanding in remote sensing field, this paper also proposes a remote sensing scene graph dataset (RSSGD). We carry out extensive experiments and the results show that our model significantly outperforms previous methods on scene graph generation. In addition, RSSGD effectively bridges the huge semantic gap between low-level perception and high-level cognition of remote sensing images.


Author(s):  
Zhongkai Li ◽  
Wenyuan Wei

To cope with an increasingly competitive market environment, manufacturers are utilizing modular technology to guide the production process, and a vital activity in the module partition is to determine the optimal granularity levels. A modular design methodology is developed for obtaining the optimal granularity of a modularized architecture in this paper. A relationship extraction solution is executed to automatically construct the design structure matrix (DSM) from the 3D CAD assembly model. Hierarchical clustering algorithm is implemented to form a hierarchical dendrogram with different granularity levels. An improved Elbow method is proposed to determine the optimum granularity level and corresponding modularity spectrum during the dendrogram process. The computational framework for hierarchical clustering and modularization with improved Elbow assessment operators is explained. Based on a existing literature example and a jaw crusher modular design case, comparative studies are carried out to verify the effectiveness and practicality of the proposed method. The methodology is characterized by running independently on the computer in data visualization format without human involvement, and the obtained result with optimized granularity favor further modular design work.


Sign in / Sign up

Export Citation Format

Share Document