Scanning Electron Microscopic Study of Adult Stored Product Beetle Elytra

1978 ◽  
Vol 61 (1) ◽  
pp. 76-87
Author(s):  
John E Kvenberg

Abstract Scanning electron microscopy was used to establish the microstructure of adult stored product beetle elytra. Twenty-three species of major importance, which commonly occur in food products, are illustrated. Micrographs and accompanying narrative descriptions provide a definitive diagnostic reference for the identification of elytral fragments examined by light microscopy.

HortScience ◽  
2000 ◽  
Vol 35 (1) ◽  
pp. 99-103 ◽  
Author(s):  
Hirofumi Terai ◽  
Alley E. Watada ◽  
Charles A. Murphy ◽  
William P. Wergin

Structural changes in chloroplasts of broccoli (Brassica oleracea L., Italica group) florets during senescence were examined using light microscopy, scanning electron microscopy (SEM) with freeze-fracture technique, and transmission electron microscopy (TEM) to better understand the process of chloroplast degradation, particularly at the advanced stage of senescence. Light microscopy revealed that chloroplasts, which initially were intact and green, became obscure in shape, and their color faded during senescence. Small, colored particles appeared in cells as the florets approached the final stage of senescence and became full- to dark-yellow in color. Scanning electron microscopy showed that stroma thylakoids in the chloroplast initially were parallel to each other and grana thylakoids were tightly stacked. As senescence advanced, the grana thylakoids degenerated and formed globules. The globules became larger by aggregation as senescence progressed, and the large globules, called “thylakoid plexus,” formed numerous vesicles. The vesicles ultimately were expelled into the cytosol, and the light microscope revealed many colored particles in the senescent cells. These results indicate that the degradation of chloroplasts in broccoli florets progresses systematically, with the final product being colored particles, which are visible in yellow broccoli sepal cells.


Author(s):  
Peter M. Andrews

Although there have been a number of recent scanning electron microscopic reports on the renal glomerulus, the advantages of scanning electron microscopy have not yet been applied to a systematic study of the uriniferous tubules. In the present investigation, scanning electron microscopy was used to study the ultrastructural morphology of the proximal, distal, thin loop, and collecting tubules. Material for observation was taken from rat kidneys which were fixed by vascular perfusion, sectioned by either cutting or fracturing technigues, and critically point dried.The brush border characterising proximal tubules is first detected on the luminal surface of Bowman's capsule adjacent to the urinary pole orifice. In this region one frequently finds irregular microvilli characterized by broad and flattened bases with occasional bulbous structures protruding from their surfaces.


Sign in / Sign up

Export Citation Format

Share Document