Seismic wavefield reconstruction inversion using a plane-wave encoding strategy
Abstract Wavefield reconstruction inversion (WRI) mitigates cycle skipping by using an inaccurate initial velocity. This attractive technique is usually implemented with shot records. However, if large numbers of shot records are used, WRI can become computationally burdensome due to the many over-determined linear systems that need to be solved. To alleviate this computational issue, we propose an efficient WRI scheme involving plane-wave encoding (WRI-PW) in the frequency domain. Plane-wave encoding can dramatically reduce the number of relevant datasets by transforming shot records into common ray-parameter gathers with time shifting. Therefore, plane-wave encoding is widely used in many aspects of seismic data processing (e.g. waveform inversion, reverse time migration, etc.). Initially, we performed a simple numerical experiment using a velocity model with a box-shaped anomaly. WRI-PW also could generate scattering wavefields in a homogeneous model. Next, computational efficiency was checked with a modified Marmousi-2 model. The results show that the usage of a sufficient plane-wave angle can achieve satisfactory inversion results. It indicates that WRI-PW requires small datasets compared to WRI. Thus, the computational costs for solving the augmented system can be reduced. Further experiments were conducted to evaluate the robustness of WRI-PW to random noise and to compare WRI-PW and conventional full waveform inversion (FWI) with a modified SEG/EAGE salt velocity model. We verify that WRI-PW is more robust to random noise than WRI, it exhibited less dependency on the accuracy of the initial velocity model than conventional FWI and it is computationally efficient.