scholarly journals Male Pregnancy in Seahorses and Pipefishes (Family Syngnathidae): Rapid Diversification of Paternal Brood Pouch Morphology Inferred From a Molecular Phylogeny

2001 ◽  
Vol 92 (2) ◽  
pp. 159-166 ◽  
Author(s):  
A. B. Wilson
2002 ◽  
Vol 50 (1) ◽  
pp. 39 ◽  
Author(s):  
Devi M. Stuart-Fox ◽  
Andrew F. Hugall ◽  
Craig Moritz

The phylogenetic relationships amongst 29 species of Carlia and Lygisaurus were estimated using a 726-base-pair segment of the protein-coding mitochondrial ND4 gene. Results do not support the recent resurrection of the genus Lygisaurus. Although most Lygisaurus species formed a single clade, this clade is nested within Carlia and includes Carlia parrhasius. Due to this new molecular evidence, and the paucity of diagnostic morphological characters separating the genera, Lygisaurus de Vis 1884 is re-synonymised with Carlia Gray 1845. Our analysis is also inconsistent with a previous suggestion that Lygisaurus timlowi should be removed to Menetia, a genus that is distantly related relative to outgroups used here. Intraspecific variation in Carlia is, in several instances, greater than interspecific distance. The most strikingly divergent lineages are found within C. rubrigularis, which appears to be paraphyletic, with southern populations more closely related to C. rhomboidalis than to northern populations of C. rubrigularis. The two C. rubrigularis–C. rhomboidalis lineages form part of a major polytomy at an intermediate level of divergence. Lack of resolution at this level, however, does not appear to be due to saturation or loss of phylogenetic signal. Rather, the polytomy probably reflects a period of relatively rapid diversification that occurred sometime during the Miocene.


2016 ◽  
Vol 94 ◽  
pp. 55-64 ◽  
Author(s):  
Juanita Rodriguez ◽  
James P. Pitts ◽  
Jaime A. Florez ◽  
Jason E. Bond ◽  
Carol D. von Dohlen

2020 ◽  
pp. 207-214
Author(s):  
Akbar Fattahi

The Iranian species of the phyllodactylid geckos of the genus Asaccus are found only in the valleys of the Zagros Mountains, a region which represents an important area of endemism in western Iran. Recently, many relict species have been described from the central and southern parts of the Zagros Mountains, which were previously known as A. elisae. The recent descriptions of species within this complex suggest that diversity within the genus may be higher than expected and that its taxonomy and systematics should be revised. In the present study, phylogenetic relationships within the genus Asaccus were evaluated using two mitochondrial and one nuclear gene. Genetically, the genus shows high levels of variability. The molecular phylogeny of the genus suggests the presence of three main clades along the Zagros Mountains with the southern population (from the Hormozgan province) and one clade (A. sp8 and A. sp9) being sister taxon to A. montanus from UAE. The remaining samples are separated into two reciprocally monophyletic groups: the northern (Kurdistan, Kermanshah and Ilam provinces) and the central (Lorestan, Khuzestan, Kohgilouye-Bouyer Ahmad and Fars provinces) Zagros groups. The results of the present study suggest that populations attributed to A. elisae in Iran correspond to distinct lineages with high genetic distances. In brief, our results suggest that the genus needs a major taxonomical revision The Arabian origin of the genus has not been confirmed, because two populations from Zagros were located within the A. montanus, A. gallagheri and A. platyrhynchus clade. Further morphological analyses are needed to systematically define each genetic lineage as a new taxon.


2019 ◽  
Author(s):  
Ming Shang ◽  
Karla S. Feu ◽  
Julien C. Vantourout ◽  
Lisa M. Barton ◽  
Heather L. Osswald ◽  
...  

<div> <div> <div> <p>The union of two powerful transformations, directed C–H activation and decarboxylative cross-coupling, for the enantioselective synthesis of vicinally functionalized alkyl, carbocyclic, and heterocyclic compounds is described. Starting from simple carboxylic acid building blocks, this modular sequence exploits the residual directing group to access more than 50 scaffolds that would be otherwise extremely difficult to prepare. The tactical use of these two transformations accomplishes a formal vicinal difunctionalization of carbon centers in a way that is modular and thus amenable to rapid diversity incorporation. A simplification of routes to known preclinical drug candidates is presented along with the rapid diversification of an antimalarial compound series. </p> </div> </div> </div>


Author(s):  
A. P. Sukhorukov ◽  
M. A. Kushunina

Kochia monticola was previously considered as a synonym for the widely distributed Irano-Turanian Panderia pilosa. After the merger of Kochia and Panderia with Bassia based on molecular phylogeny, K. monticola remained a synonym of Bassia pilosa. We claim that Bassia monticola, a name proposed by Kuntze (1891) for K. monticola, should be separated from B. pilosa based on morphological characters and localised distribution in mountainous regions of Iran, Iraq, Syria, and Lebanon at altitudes 1800–2600 m a. s. l.


Sign in / Sign up

Export Citation Format

Share Document