character displacement
Recently Published Documents


TOTAL DOCUMENTS

460
(FIVE YEARS 71)

H-INDEX

61
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Pedro Horta ◽  
Helena Raposeira ◽  
Adrián Baños ◽  
Carlos Ibáñez ◽  
Orly Razgour ◽  
...  

Abstract Cryptic species that coexist in sympatry are likely to simultaneously experience strong competition and hybridization. The first phenomenon would lead to character displacement, whereas the second can potentially promote morphological similarity through adaptive introgression. The main goal of this work was to investigate the effect of introgressive hybridization on the morphology of cryptic Iberian Eptesicus bats when facing counteracting evolutionary forces from interspecific competition. We found substantial overlap both in dentition and in wing morphology traits, though mainly in individuals in sympatry. The presence of hybrids contributes to a fifth of this overlap, with hybrids showing traits with intermediate morphometry. Thus, introgressive hybridization may contribute to species adaptation to trophic and ecological space responding directly to the macro-habitats characteristics of the sympatric zone and to local prey availability. On the other hand, fur shade tended to be browner and brighter in hybrids than parental species. Colour differences could result from partitioning of resources as an adaptation to environmental factors such as roost and microhabitats. We argue that a balance between adaptive introgression and niche partitioning shapes species interactions with the environment through affecting morphological traits under selection.


2021 ◽  
Author(s):  
Taira Nishimura ◽  
Nobuaki Nagata ◽  
Karen Terada ◽  
Tian Xia ◽  
Kohei Kubota ◽  
...  

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Chris Simon ◽  
John R. Cooley ◽  
Richard Karban ◽  
Teiji Sota

Apart from model organisms, 13- and 17-year periodical cicadas (Hemiptera: Cicadidae: Magicicada) are among the most studied insects in evolution and ecology. They are attractive subjects because they predictably emerge in large numbers; have a complex biogeography shaped by both spatial and temporal isolation; and include three largely sympatric, parallel species groups that are, in a sense, evolutionary replicates. Magicicada are also relatively easy to capture and manipulate, and their spectacular, synchronized mass emergences facilitate outreach and citizen science opportunities. Since the last major review, studies of Magicicada have revealed insights into reproductive character displacement and the nature of species boundaries, provided additional examples of allochronic speciation, found evidence for repeated and parallel (but noncontemporaneous) evolution of 13- and 17-year life cycles, quantified the amount and direction of gene flow through time, revealed phylogeographic patterning resulting from paleoclimate change, studied the timing of juvenile development, and created hypotheses for the evolution of life-cycle control and the future effects of climate change on Magicicada life cycles. New ecological studies have supported and questioned the role of prime numbers in Magicicada ecology and evolution, found bidirectional shifts in population size over generations, quantified the contribution of Magicicada to nutrient flow in forest ecosystems, and examined behavioral and biochemical interactions between Magicicada and their fungal parasites and bacterial endosymbionts. Expected final online publication date for the Annual Review of Entomology, Volume 67 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Jaime Anaya-Rojas ◽  
Ronald Bassar ◽  
Blake Matthews ◽  
Joshua Goldberg ◽  
David Reznick ◽  
...  

In communities structured by body size, coexistence can occur through combinations of ontogenetic changes in competitive ability and dietary niche. Using stable isotopes, we examined ontogenetic niche shifts in Trinidadian guppies (Poecilia reticulata) and killifish (Rivulus hartii) in three types of natural communities (both species with predators, KGP; both without predators, KG; killifish only, KO) and four experimental KG communities, initiated with KGP guppies and KO killifish between 13 and 45 years ago. In all communities, killifish occupied higher trophic positions and changed their diet (δ^13 C) with body size. Only KGP guppies displayed an ontogenetic niche shift. The KG guppies displayed a significant difference in trophic niche from KGP guppies, a character displacement that can facilitate coexistence with killifish. In the experimental communities, the guppy trophic niche was intermediate between those in KGP and KG communities, indicating that evolution has driven the niche shift in KG guppies.


Author(s):  
Jaime Anaya-Rojas ◽  
Ronald Bassar ◽  
Blake Matthews ◽  
Joshua Goldberg ◽  
David Reznick ◽  
...  

In communities structured by body size, coexistence can occur through combinations of ontogenetic changes in competitive ability and dietary niche. Using stable isotopes, we examined ontogenetic niche shifts in Trinidadian guppies (Poecilia reticulata) and killifish (Rivulus hartii) in three types of natural communities (both species with predators, KGP; both without predators, KG; killifish only, KO) and four experimental KG communities, initiated with KGP guppies and KO killifish between 13 and 45 years ago. In all communities, killifish occupied higher trophic positions and changed their diet (δ^13 C) with body size. Only KGP guppies displayed an ontogenetic niche shift. The KG guppies displayed a significant difference in trophic niche from KGP guppies, a character displacement that can facilitate coexistence with killifish. In the experimental communities, the guppy trophic niche was intermediate between those in KGP and KG communities, indicating that evolution has driven the niche shift in KG guppies.


2021 ◽  
Vol 118 (20) ◽  
pp. e2021209118
Author(s):  
Sean A. S. Anderson ◽  
Jason T. Weir

Coexisting (sympatric) pairs of closely related species are often characterized by exaggerated trait differences. This widespread pattern is consistent with adaptation for reduced similarity due to costly interactions (i.e., “character displacement”)—a classic hypothesis in evolutionary theory. But it is equally consistent with a community assembly bias in which lineages with greater trait differences are more likely to establish overlapping ranges in the first place (i.e., “species sorting”), as well as with null expectations of trait divergence through time. Few comparative analyses have explicitly modeled these alternatives, and it remains unclear whether trait divergence is a general prerequisite for sympatry or a consequence of interactions between sympatric species. Here, we develop statistical models that allow us to distinguish the signature of these processes based on patterns of trait divergence in closely related lineage pairs. We compare support for each model using a dataset of bill shape differences in 207 pairs of New World terrestrial birds representing 30 avian families. We find that character displacement models are overwhelmingly supported over species sorting and null expectations, indicating that exaggerated bill shape differences in sympatric pairs result from enhanced divergent selection in sympatry. We additionally detect a latitudinal gradient in character displacement, which appears strongest in the tropics. Our analysis implicates costly species interactions as powerful drivers of trait divergence in a major vertebrate fauna. These results help substantiate a long-standing but equivocally supported linchpin of evolutionary theory.


2021 ◽  
Vol 75 (5) ◽  
Author(s):  
Tainara V. Sobroza ◽  
Marcelo Gordo ◽  
Pedro A. C. L. Pequeno ◽  
Jacob C. Dunn ◽  
Wilson R. Spironello ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document