scholarly journals Novel Repeated DNA Sequences in Safflower (Carthamus tinctorius L.) (Asteraceae): Cloning, Sequencing, and Physical Mapping by Fluorescence in situ Hybridization

2005 ◽  
Vol 96 (4) ◽  
pp. 424-429 ◽  
Author(s):  
S. N. Raina ◽  
S. Sharma ◽  
T. Sasakuma ◽  
M. Kishii ◽  
S. Vaishnavi
Genome ◽  
1996 ◽  
Vol 39 (2) ◽  
pp. 243-248 ◽  
Author(s):  
Thomas Schmidt ◽  
Jörg Kudla

Monomers of a major family of tandemly repeated DNA sequences of Antirrhinum majus have been cloned and characterized. The repeats are 163–167 bp long, contain on average 60% A + T residues, and are organized in head-to-tail orientation. According to site-specific methylation differences two subsets of repeating units can be distinguished. Fluorescent in situ hybridization revealed that the repeats are localized at centromeric regions of six of the eight chromosome pairs of A. majus with substantial differences in array size. The monomeric unit shows no homologies to other plant satellite DNAs. The repeat exists in a similar copy number and conserved size in the genomes of six European species of the genus Antirrhinum. Tandemly repeated DNA sequences with homology to the cloned monomer were also found in the North American section Saerorhinum, indicating that this satellite DNA might be of ancient origin and was probably already present in the ancestral genome of both sections. Key words : Antirrhinum majus, satellite DNA, repetitive DNA, methylation, in situ hybridization.


Genome ◽  
1997 ◽  
Vol 40 (3) ◽  
pp. 309-317 ◽  
Author(s):  
Angeles Cuadrado ◽  
Nicolás Jouve

The presence and distribution of the most important highly repetitive DNA sequences of rye in cultivated and wild species of the genus Secale were investigated using fluorescence in situ hybridization. Accurate identification of individual chromosomes in the most commonly recognized species or subspecies of the genus Secale (S. cereale, S. ancestrale, S. segetale, S. afghanicum, S. dighoricum, S. montanum, S. montanum ssp. kuprijanovii, S. africanum, S. anatolicum, S. vavilovii, and S. silvestre) was achieved using three highly repetitive rye DNA sequences (probes pSc119.2, pSc74, and pSc34) and the 5S ribosomal DNA sequence pTa794. It is difficult to superimpose trends in the complexity of repetitive DNA during the evolution of the genus on conclusions from other cytogenetic and morphological assays. However, there are two clear groups. The first comprises the self-pollinated annuals S. silvestre and S. vavilovii that have few repeated nucleotide sequences of the main families of 120 and 480 bp. The second group presents amplification and interstitialization of the repeated nucleotide sequences and includes the perennials S. montanum, S. anatolicum, S. africanum, and S. kuprijanovii, as well as the annual and open-pollinated species S. cereale and its related weedy forms. The appearance of a new locus for 5S rRNA in S. cereale and S. ancestrale suggests that cultivated ryes evolved from this wild weedy species.Key words: rye, repeated nucleotide sequence, 5S rDNA, fluorescence in situ hybridization, FISH.


Genome ◽  
2000 ◽  
Vol 43 (6) ◽  
pp. 945-948 ◽  
Author(s):  
N Cuñado ◽  
J Barrios ◽  
J L Santos

A method of preparing two-dimensional surface spreads of plant synaptonemal complexes (SCs) associated with fluorescence in situ hybridization (FISH) has been applied to analyze the location and organization of five different highly repeated DNA sequences in rye. Our observations indicate that, depending on the type of sequence, the chromatin displays different types of organization. Telomeric sequences were seen tightly associated with the SC while other repetitive DNA sequences were found to form loops that are associated with SCs only at their bases. On the contrary, the FISH signal of a centromeric satellite had a granular appearance, reflecting that the hybridization occurs only with parts of the chromatin loops.Key words: fluorescence in situ hybridization, meiosis, repetitive DNA, rye, synaptonemal complex.


Genome ◽  
1995 ◽  
Vol 38 (5) ◽  
pp. 850-857 ◽  
Author(s):  
Esther Ferrer ◽  
Yolanda Loarce ◽  
Gregorio Hueros

Genomic DNA from 19 species and subspecies representing the four basic genomes (H, I, X, and Y) of Hordeum was restricted with HaeIII and hybridized with two repeated DNA sequences of Hordeum chilense. The potential use of repeated sequences in ascertaining genomic affinities within the genus Hordeum was studied by comparing restriction fragment patterns. The study demonstrated the following: (i) species that shared a basic genome showed more similar hybridization fragment patterns than species with different genomes, whether with pHchl or pHch3; (ii) hybridization with pHchl revealed the presence of certain fragments limited to the species with a H genome; and (iii) the alloploid nature of species like H. jubatum was confirmed. The chromosomal distribution of the two repeated sequences was studied in species representing each basic genome and in the amphiploid tritordeum using fluorescent in situ hybridization. No interspecific differences were found between the diploid species. In situ experiments indicated the alloploid nature of H. depressum. Both sequences allow H. chilense chromatin to be distinguished from wheat chromosomes in tritordeum.Key words: repeated DNA sequences; in situ hybridization, Hordeum, tritordeum.


Genome ◽  
1998 ◽  
Vol 41 (4) ◽  
pp. 527-534 ◽  
Author(s):  
Andreas Katsiotis ◽  
Marianna Hagidimitriou ◽  
Alexandra Douka ◽  
Polydefkis Hatzopoulos

Two tandemly repeated DNA sequences, the 81-bp family and pOS218, have been isolated from a Sau3AI Olea europaea ssp. sativa partial genomic library. Sequencing of the 81-bp element showed the monomer to be between 78 and 84 bases long and to contain 51-58% adenine and thymidine residues. Comparison between the monomers revealed heterogeneity of the sequence primary structure. The clone pOS218 is 218 bases long, and sequence comparison between the two elements revealed that an internal region of the pOS218 repeated DNA sequence had 79% homology to the 81 bp repeat sequence. A breakage-reunion mechanism, involving the CAAAA sequence, could be responsible for the derivation of pOS218 from the 81 bp family element. By using double target in situ hybridization, co-localization of the two sequences on Olea chromosomes was observed. The sequences were present at DAPI stained heterochromatic regions, as major or minor sites having a subtelomeric or interstitial location. Methylation studies using two sets of isoschizomers, Sau3AI-MboI and MspI-HpaII, demonstrated that most cytosine residues in the GATC sites and the internal cytosine in the CCGG sites of both elements were methylated in O. europaea ssp. sativa. No major difference in methylation was apparent between DNA extracted from young leaves or from callus of O. europaea ssp.sativa. Both elements are also present in Olea chrysophylla, Olea oleaster, and Olea africana, but are absent from other Oleaceae genera, including Phillyrea, Forsythia, Ligustrum, Parasyringa, and Jasminum.Key words: in situ hybridization, methylation, Oleaceae, phylogenetic relationships, repeated sequences.


2011 ◽  
Vol 30 (9) ◽  
pp. 1779-1786 ◽  
Author(s):  
Kun Yang ◽  
Hecui Zhang ◽  
Richard Converse ◽  
Yong Wang ◽  
Xiaoying Rong ◽  
...  

Genome ◽  
2004 ◽  
Vol 47 (1) ◽  
pp. 179-189 ◽  
Author(s):  
J L Stephens ◽  
S E Brown ◽  
N L.V Lapitan ◽  
D L Knudson

The primary objective of this study was to elucidate gene organization and to integrate the genetic linkage map for barley (Hordeum vulgare L.) with a physical map using ultrasensitive fluorescence in situ hybridization (FISH) techniques for detecting signals from restriction fragment length polymorphism (RFLP) clones. In the process, a single landmark plasmid, p18S5Shor, was constructed that identified and oriented all seven of the chromosome pairs. Plasmid p18S5Shor was used in all hybridizations. Fourteen cDNA probes selected from the linkage map for barley H. vulgare 'Steptoe' × H. vulgare 'Morex' (Kleinhofs et al. 1993) were mapped using an indirect tyramide signal amplification technique and assigned to a physical location on one or more chromosomes. The haploid barley genome is large and a complete physical map of the genome is not yet available; however, it was possible to integrate the linkage map and the physical locations of these cDNAs. An estimate of the ratio of base pairs to centimorgans was an average of 1.5 Mb/cM in the distal portions of the chromosome arms and 89 Mb/cM near the centromere. Furthermore, while it appears that the current linkage maps are well covered with markers along the length of each arm, the physical map showed that there are large areas of the genome that have yet to be mapped.Key words: Hordeum vulgare, barley, physical mapping, FISH, cDNA, genetics, linkage, chromosome, BACs.


Genome ◽  
1997 ◽  
Vol 40 (5) ◽  
pp. 589-593 ◽  
Author(s):  
C. Pedersen ◽  
P. Langridge

Using the Aegilops tauschii clone pAs1 together with the barley clone pHvG38 for two-colour fluorescence in situ hybridization (FISH) the entire chromosome complement of hexaploid wheat was identified. The combination of the two probes allowed easy discrimination of the three genomes of wheat. The banding pattern obtained with the pHvG38 probe containing the GAA-satellite sequence was identical to the N-banding pattern of wheat. A detailed idiogram was constructed, including 73 GAA bands and 48 pAs1 bands. Identification of the wheat chromosomes by FISH will be particularly useful in connection with the physical mapping of other DNA sequences to chromosomes, or for chromosome identification in general, as an alternative to C-banding.Key words: Triticum aestivum, chromosome identification, fluorescence in situ hybridization, repetitive DNA sequences.


Sign in / Sign up

Export Citation Format

Share Document