satellite sequence
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 5)

H-INDEX

14
(FIVE YEARS 1)

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Uma P. Arora ◽  
Caleigh Charlebois ◽  
Raman Akinyanju Lawal ◽  
Beth L. Dumont

Abstract Background Mammalian centromeres are satellite-rich chromatin domains that execute conserved roles in kinetochore assembly and chromosome segregation. Centromere satellites evolve rapidly between species, but little is known about population-level diversity across these loci. Results We developed a k-mer based method to quantify centromere copy number and sequence variation from whole genome sequencing data. We applied this method to diverse inbred and wild house mouse (Mus musculus) genomes to profile diversity across the core centromere (minor) satellite and the pericentromeric (major) satellite repeat. We show that minor satellite copy number varies more than 10-fold among inbred mouse strains, whereas major satellite copy numbers span a 3-fold range. In contrast to widely held assumptions about the homogeneity of mouse centromere repeats, we uncover marked satellite sequence heterogeneity within single genomes, with diversity levels across the minor satellite exceeding those at the major satellite. Analyses in wild-caught mice implicate subspecies and population origin as significant determinants of variation in satellite copy number and satellite heterogeneity. Intriguingly, we also find that wild-caught mice harbor dramatically reduced minor satellite copy number and elevated satellite sequence heterogeneity compared to inbred strains, suggesting that inbreeding may reshape centromere architecture in pronounced ways. Conclusion Taken together, our results highlight the power of k-mer based approaches for probing variation across repetitive regions, provide an initial portrait of centromere variation across Mus musculus, and lay the groundwork for future functional studies on the consequences of natural genetic variation at these essential chromatin domains.


Genetics ◽  
2021 ◽  
Vol 217 (4) ◽  
Author(s):  
Na Wang ◽  
Jianing Liu ◽  
William A Ricci ◽  
Jonathan I Gent ◽  
R Kelly Dawe

Abstract Centromeres are defined by the location of Centromeric Histone H3 (CENP-A/CENH3) which interacts with DNA to define the locations and sizes of functional centromeres. An analysis of 26 maize genomes including 110 fully assembled centromeric regions revealed positive relationships between centromere size and genome size. These effects are independent of variation in the amounts of the major centromeric satellite sequence CentC. We also backcrossed known centromeres into two different lines with larger genomes and observed consistent increases in functional centromere sizes for multiple centromeres. Although changes in centromere size involve changes in bound CENH3, we could not mimic the effect by overexpressing CENH3 by threefold. Literature from other fields demonstrate that changes in genome size affect protein levels, organelle size and cell size. Our data demonstrate that centromere size is among these scalable features, and that multiple limiting factors together contribute to a stable centromere size equilibrium.


2020 ◽  
Author(s):  
Na Wang ◽  
Jianing Liu ◽  
William A. Ricci ◽  
Jonathan I. Gent ◽  
R. Kelly Dawe

AbstractCentromeres are defined by the location of Centromeric Histone H3 (CENP-A/CENH3) which interacts with DNA to define the locations and sizes of functional centromeres. An analysis of 26 maize genomes including 110 fully assembled centromeric regions revealed positive relationships between centromere size and genome size. These effects are independent of variation in the amounts of the major centromeric satellite sequence CentC. We also backcrossed known centromeres into two different lines with larger genomes and observed consistent increases in functional centromere sizes for multiple centromeres. Although changes in centromere size involve changes in bound CENH3, we could not mimic the effect by overexpressing CENH3 by threefold. Literature from other fields demonstrate that changes in genome size affect protein levels, organelle size and cell size. Our data demonstrate that centromere size is among these scalable features, and that multiple limiting factors together contribute to a stable centromere size equilibrium.


2020 ◽  
Vol 37 (5) ◽  
pp. 1362-1375 ◽  
Author(s):  
Jullien M Flynn ◽  
Manyuan Long ◽  
Rod A Wing ◽  
Andrew G Clark

Abstract The factors that drive the rapid changes in abundance of tandem arrays of highly repetitive sequences, known as satellite DNA, are not well understood. Drosophila virilis has one of the highest relative amounts of simple satellites of any organism that has been studied, with an estimated >40% of its genome composed of a few related 7-bp satellites. Here, we use D. virilis as a model to understand technical biases affecting satellite sequencing and the evolutionary processes that drive satellite composition. By analyzing sequencing data from Illumina, PacBio, and Nanopore platforms, we identify platform-specific biases and suggest best practices for accurate characterization of satellites by sequencing. We use comparative genomics and cytogenetics to demonstrate that the highly abundant AAACTAC satellite family arose from a related satellite in the branch leading to the virilis phylad 4.5–11 Ma before exploding in abundance in some species of the clade. The most abundant satellite is conserved in sequence and location in the pericentromeric region but has diverged widely in abundance among species, whereas the satellites nearest the centromere are rapidly turning over in sequence composition. By analyzing multiple strains of D. virilis, we saw that the abundances of two centromere-proximal satellites are anticorrelated along a geographical gradient, which we suggest could be caused by ongoing conflicts at the centromere. In conclusion, we illuminate several key attributes of satellite evolutionary dynamics that we hypothesize to be driven by processes including selection, meiotic drive, and constraints on satellite sequence and abundance.


2019 ◽  
Author(s):  
Jullien M. Flynn ◽  
Manyuan Long ◽  
Rod A. Wing ◽  
Andrew G. Clark

AbstractThe factors that drive the rapid changes in satellite DNA genomic composition we see in eukaryotes are not well understood.Drosophila virilishas one of the highest relative amounts of simple satellites of any organism that has been studied, with an estimated >40% of its genome composed of a few related 7 bp satellites. Here we useD. virilisas a model to understand technical biases affecting satellite sequencing and the evolutionary processes that drive satellite composition. By analyzing sequencing data from Illumina, PacBio, and Nanopore platforms, we identify platform-specific biases and suggest best practices for accurate characterization of satellites by sequencing. We use comparative genomics and cytogenetics to demonstrate that the highly abundant satellite family arose from a related satellite in the branch leading to the virilis phylad 4.5 - 11 million years ago before exploding in abundance in some species of the clade. The most abundant satellite is conserved in sequence and location in the pericentromeric region but has diverged widely in abundance among species, whereas the satellites nearest the centromere are rapidly turning over in sequence composition. By analyzing multiple strains ofD. virilis, we saw that one centromere-proximal satellite is increasing in abundance along a geographical gradient while the other is contracting in an anti-correlated manner, suggesting ongoing conflicts at the centromere. In conclusion, we illuminate several key attributes of satellite evolutionary dynamics that we hypothesize to be driven by processes like selection, meiotic drive, and constraints on satellite sequence and abundance.


2017 ◽  
Vol 25 (3-4) ◽  
pp. 241-252 ◽  
Author(s):  
Martina Dalíková ◽  
Magda Zrzavá ◽  
Svatava Kubíčková ◽  
František Marec

Genetica ◽  
2016 ◽  
Vol 144 (4) ◽  
pp. 385-395 ◽  
Author(s):  
Pavlína Věchtová ◽  
Martina Dalíková ◽  
Miroslava Sýkorová ◽  
Martina Žurovcová ◽  
Zoltán Füssy ◽  
...  

BMC Genomics ◽  
2012 ◽  
Vol 13 (1) ◽  
pp. 418 ◽  
Author(s):  
Anna Arutyunyan ◽  
Sonia Stoddart ◽  
Sun-ju Yi ◽  
Fei Fei ◽  
Min Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document