5. Tumor and Target Volumes and Adaptive Radiotherapy

2009 ◽  
Vol 8 (1) ◽  
pp. 41-51
Author(s):  
Bongile Mzenda ◽  
M.E. Hosseini-Ashrafi ◽  
A. Palmer ◽  
D.F. Hodgson ◽  
H. Liu ◽  
...  

AbstractThis study assesses the influence of new techniques and technologies in radiotherapy on the derivation and applicability of the margins currently used for treatment planning. The validity of the continued use of the recommendations of International Commission on Radiation Units and Measurements (ICRU) and other recommendations as a result of the additional information derived from these emerging techniques is also reviewed. The ICRU formulations still remain fundamental in the derivation of target volumes in radiotherapy; however, revisions to these have been recommended through various experimental and modelling techniques leading to the publication of various margin recipes. These recipes are used for margin definitions in new radiotherapy techniques including intensity-modulated radiotherapy (IMRT). The use of image-guided radiotherapy (IGRT) techniques leads to the reduction in organ motion uncertainties and setup errors, allowing for the adjustment of margins and treatment plans as well as dose escalation. Clinical trials are still needed to validate most of the new techniques in radiotherapy, particularly in IGRT techniques leading to adaptive radiotherapy. It is recommended that well devised clinical trials should be conducted to investigate fully the efficacy of these new techniques, particularly in radiotherapy image guidance and adaptive radiotherapy. Such trials would validate any recommendations regarding the current clinical margins and impact on their continued clinical use.


2012 ◽  
Vol 103 ◽  
pp. S471-S472
Author(s):  
J.L. Monroy Anton ◽  
M. Lopez Muñoz ◽  
M. Soler Tortosa ◽  
M.A. Estornell Gualde ◽  
A.V. Navarro Bergadá

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Rianne de Jong ◽  
Jorrit Visser ◽  
Niek van Wieringen ◽  
Jan Wiersma ◽  
Debby Geijsen ◽  
...  

Abstract Background Online adaptive radiotherapy has the potential to reduce toxicity for patients treated for rectal cancer because smaller planning target volumes (PTV) margins around the entire clinical target volume (CTV) are required. The aim of this study is to describe the first clinical experience of a Conebeam CT (CBCT)-based online adaptive workflow for rectal cancer, evaluating timing of different steps in the workflow, plan quality, target coverage and patient compliance. Methods Twelve consecutive patients eligible for 5 × 5 Gy pre-operative radiotherapy were treated on a ring-based linear accelerator with a multidisciplinary team present at the treatment machine for each fraction. The accelerator is operated using an integrated software platform for both treatment planning and delivery. In all directions for all CTVs a PTV margin of 5 mm was used, except for the cranial/caudal borders of the total CTV where a margin of 8 mm was applied. A reference plan was generated based on a single planning CT. After aligning the patient the online adaptive procedure started with acquisition of a CBCT. The planning CT scan was registered to the CBCT using deformable registration and a synthetic CT scan was generated. With the support of artificial intelligence, structure guided deformation and the synthetic CT scan contours were adapted by the system to match the anatomy on the CBCT. If necessary, these contours were adjusted before a new plan was generated. A second and third CBCT were acquired to validate the new plan with respect to CTV coverage just before and after treatment delivery, respectively. Treatment was delivered using volumetric modulated arc treatment (VMAT). All steps in this process were defined and timed. Results On average the timeslot needed at the treatment machine was 34 min. The process of acquiring a CBCT, evaluating and adjusting the contours, creating the new plan and verifying the CTV on the CBCT scan took on average 20 min. Including delivery and post treatment verification this was 26 min. Manual adjustments of the target volumes were necessary in 50% of fractions. Plan quality, target coverage and patient compliance were excellent. Conclusions First clinical experience with CBCT-based online adaptive radiotherapy shows it is feasible for rectal cancer. Trial registration Medical Research Involving Human Subjects Act (WMO) does not apply to this study and was retrospectively approved by the Medical Ethics review Committee of the Academic Medical Center (W21_087 # 21.097; Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, The Netherlands).


2021 ◽  
Author(s):  
Rianne de Jong ◽  
Jorrit Visser ◽  
Niek van Wieringen ◽  
Jan Wiersma ◽  
Debby Geijsen ◽  
...  

Abstract BackgroundOnline adaptive radiotherapy has the potential to reduce toxicity for patients treated for rectal cancer because smaller planning target volumes (PTV) margins around the entire clinical target volume (CTV) are required. The aim of this study is to describe the first clinical experience of a Conebeam CT(CBCT)-based online adaptive workflow, evaluating timing of different steps in the workflow, plan quality, target coverage and patient compliance.MethodsTwelve consecutive patients eligible for 5 x 5 Gy pre-operative radiotherapy were treated on a ring-based linear accelerator with a multidisciplinary team present at the treatment machine for each fraction. The accelerator is operated using an integrated software platform for both treatment planning and delivery. In all directions for all CTVs a PTV margin of 5 mm was used, except for the cranial/caudal borders of the total CTV where a margin of 8mm was applied. A reference plan was generated based on a single planning CT. After aligning the patient the online adaptive procedure started with acquisition of a CBCT. The planning CT scan was registered to the CBCT using deformable registration and a synthetic CT scan was generated. With the support of artificial intelligence, structure guided deformation and the synthetic CT scan contours were adapted by the system to match the anatomy on the CBCT. If necessary, these contours were adjusted before a new plan was generated. A second and third CBCT were acquired to validate the new plan with respect to CTV coverage just before and after treatment delivery, respectively. Treatment was delivered using volumetric modulated arc treatment (VMAT). All steps in this process defined and timed. ResultsOn average the timeslot needed at the treatment machine was 34 minutes. The process of acquiring a CBCT, evaluating and adjusting the contours, creating the new plan and verifying the CTV on the CBCT scan took on average 20 minutes. Including delivery and post treatment verification this was 26 minutes. Manual adjustments of the target volumes were necessary in 50% of fractions. Plan quality, target coverage and patient compliance were excellent.ConclusionsFirst clinical experience with CBCT-based online adaptive radiotherapy shows it is feasible for rectal cancer. Trial registrationMedical Research Involving Human Subjects Act (WMO) does not apply to this study and was retrospectively approved by the Medical Ethics review Committee of the Academic Medical Center (W21_087 # 21.097; Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, The Netherlands).


2005 ◽  
Vol 44 (01) ◽  
pp. 8-14 ◽  
Author(s):  
B. Dietl ◽  
J. Marienhagen

Summary Aims: An explorative analysis of the diagnostic as well as therapeutic impact of 18F-FDG whole body PET on patients with various tumours in the setting of an university hospital radiation therapy was performed. Patients and methods: 222 FDG PET investigations (148 initial stagings, 74 restagings) in 176 patients with diverse tumour entities (37 lung carcinoma, 15 gastrointestinal tumours, 38 head and neck cancer, 30 lymphoma, 37 breast cancer, 19 sarcoma and 16 other carcinomas) were done. All PET scans were evaluated in an interdisciplinary approach and consecutively confirmed by other imaging modalities or biopsy. Unconfirmed PET findings were ignored. Proportions of verified PET findings, additional diagnostic information (diagnostic impact) and changes of the therapeutic concept intended and documented before PET with special emphasis on radiooncological decisions (therapeutic impact) were analysed. Results: 195/222 (88%) FDG-PET findings were verified, 104/222 (47%) FDG-PET scans yielded additional diagnostic information (38 distant, 30 additional metastasis, 11 local recurrencies, 10 primary tumours and 15 residual tumours after chemoptherapy). The results of 75/222 (34%) scans induced changes in cancer therapy and those of 58/222 (26%) scans induced modifications of radiotherapeutic treatment plan (esp. target volumes). Conclusion: 18F-FDG whole body PET is a valuable diagnostic tool for therapy planning in radiooncology with a high impact on therapeutic decisions in initial staging as well as in restaging. Especially in a curative setting it should be used for definition of target volumes.


Sign in / Sign up

Export Citation Format

Share Document