Effects of Cyclic Feeding and Starvation, Mating, and Sperm Condition on Egg Production and Fertility in the Common Bed Bug (Hemiptera: Cimicidae)

2017 ◽  
Vol 54 (6) ◽  
pp. 1483-1490 ◽  
Author(s):  
Yvonne K Matos ◽  
Jason A Osborne ◽  
Coby Schal
Author(s):  
Raymond Berry

AbstractThe bed bug, Cimex lectularius L., is a common ectoparasite found to live among its vertebrate hosts. Antennal segments in bugs are critical for sensing multiple cues in the environment for survival. To determine whether the thermo receptors of bed bugs are located on their antennae; innovative bioassays were created to observe the choice between heated and unheated stimuli and to characterize the response of bugs to a heat source. Additionally, the effect of complete antenectomized segments on heat detection were evaluated. Heat, carbon dioxide, and moisture are cues that are found to activate bed bug behavior; a temperature at 38°C was used to assess the direction/degree at which the insect reacts to the change in distance from said stimulus. Using a lightweight spherical ball suspended by air through a vacuum tube, bed bugs and other insects are able to move in 360° while on a stationary point. Noldus EthoVision XT was used to capture video images and to track the bed bugs during 5-min bioassays. A bioassay was created using four Petri dish arenas to observe bed bug attraction to heat based on antennae segments at 40°C. The purpose of this study was to evaluate the effects of heat on complete antenectomized segments of the antennae. The results in this experiment suggest that bed bugs detect and are attracted to heat modulated by nutritional status. Learning the involvement of antennae segments in heat detection will help identify the location and role of thermoreceptors for bed bug host interaction.


2016 ◽  
Vol 109 (3) ◽  
pp. 1364-1368 ◽  
Author(s):  
David G. Lilly ◽  
Kai Dang ◽  
Cameron E. Webb ◽  
Stephen L. Doggett

FACETS ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 105-110 ◽  
Author(s):  
Benoit Talbot ◽  
Nusha Keyghobadi ◽  
Brock Fenton

Cimicid insects, bed bugs and their allies, include about 100 species of blood-feeding ectoparasites. Among them, a few have become widespread and abundant pests of humans. Cimicids vary in their degree of specialization to hosts. Whereas most species specialize on insectivorous birds or bats, the common bed bug can feed on a range of distantly related host species, such as bats, humans, and chickens. We suggest that association with humans and generalism in bed bugs led to fundamentally different living conditions that fostered rapid growth and expansion of their populations. We propose that the evolutionary and ecological success of common bed bugs reflected exploitation of large homeothermic hosts (humans) that sheltered in buildings. This was a departure from congeners whose hosts are much smaller and often heterothermic. We argue that interesting insights into the biology of pest species may be obtained using an integrated view of their ecology and evolution.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 133 ◽  
Author(s):  
Sudip Gaire ◽  
Michael Scharf ◽  
Ameya Gondhalekar

Management of the common bed bug (Cimex lectularius L.) necessitates the use of multiple control techniques. In addition to synthetic pesticides and mechanical interventions, plant-derived essential oils represent one of the control options. Mixtures of two or more essential oil components (monoterpenoids) exhibit synergistic toxicity effects against insects due to increased cuticular penetration. Monoterpenoids, such as carvacrol, eugenol and thymol, are neurologically active and inhibit the nerve firing activity of C. lectularius. However, the effects of mixtures of these monoterpenoids on their toxicity and neuroinhibitory potential against C. lectularius are not known. In this study, the toxicity levels of a tertiary mixture of carvacrol, eugenol and thymol (1:1:1 ratio) and a binary mixture of synthetic insecticides, bifenthrin and imidacloprid (1:1 ratio) were evaluated against C. lectularius through topical bioassays and electrophysiology experiments. Both a mixture of monoterpenoids and the mixture of synthetic insecticides exhibited synergistic effects in topical bioassays. In electrophysiology experiments, the monoterpenoid mixture led to greater neuroinhibitory effects, whereas a mixture of synthetic insecticides caused higher neuroexcitatory effects in comparison to single compounds. This study shows evidence for neurological mechanisms of synergistic interactions between monoterpenoids and provides information regarding the utilization of natural compound mixtures for C. lectularius management.


2020 ◽  
Vol 168 (6-7) ◽  
pp. 513-522 ◽  
Author(s):  
Ljubinka Francuski ◽  
Walter Jansen ◽  
Leo W. Beukeboom

2018 ◽  
Vol 112 (2) ◽  
pp. 786-791 ◽  
Author(s):  
Maria A Gonzalez-Morales ◽  
Alvaro Romero

Sign in / Sign up

Export Citation Format

Share Document