scholarly journals Bed bugs: The move to humans as hosts

FACETS ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 105-110 ◽  
Author(s):  
Benoit Talbot ◽  
Nusha Keyghobadi ◽  
Brock Fenton

Cimicid insects, bed bugs and their allies, include about 100 species of blood-feeding ectoparasites. Among them, a few have become widespread and abundant pests of humans. Cimicids vary in their degree of specialization to hosts. Whereas most species specialize on insectivorous birds or bats, the common bed bug can feed on a range of distantly related host species, such as bats, humans, and chickens. We suggest that association with humans and generalism in bed bugs led to fundamentally different living conditions that fostered rapid growth and expansion of their populations. We propose that the evolutionary and ecological success of common bed bugs reflected exploitation of large homeothermic hosts (humans) that sheltered in buildings. This was a departure from congeners whose hosts are much smaller and often heterothermic. We argue that interesting insights into the biology of pest species may be obtained using an integrated view of their ecology and evolution.

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael L. Fisher ◽  
Jay F. Levine ◽  
James S. Guy ◽  
Hiroyuki Mochizuki ◽  
Matthew Breen ◽  
...  

Abstract Background The common bed bug, Cimex lectularius, is an obligatory blood-feeding ectoparasite that requires a blood meal to molt and produce eggs. Their frequent biting to obtain blood meals and intimate association with humans increase the potential for disease transmission. However, despite more than 100 years of inquiry into bed bugs as potential disease vectors, they still have not been conclusively linked to any pathogen or disease. This ecological niche is extraordinarily rare, given that nearly every other blood-feeding arthropod is associated with some type of human or zoonotic disease. Bed bugs rely on the bacteria Wolbachia as an obligate endosymbiont to biosynthesize B vitamins, since they acquire a nutritionally deficient diet, but it is unknown if Wolbachia confers additional benefits to its bed bug host. In some insects, Wolbachia induces resistance to viruses such as Dengue, Chikungunya, West Nile, Drosophila C and Zika, and primes the insect immune system in other blood-feeding insects. Wolbachia might have evolved a similar role in its mutualistic association with the bed bug. In this study, we evaluated the influence of Wolbachia on virus replication within C. lectularius. Methods We used feline calicivirus as a model pathogen. We fed 40 bed bugs from an established line of Wolbachia-cured and a line of Wolbachia-positive C. lectularius a virus-laden blood meal, and quantified the amount of virus over five time intervals post-feeding. The antibiotic rifampicin was used to cure bed bugs of Wolbachia. Results There was a significant effect of time post-feeding, as the amount of virus declined by ~90% over 10 days in both groups, but no significant difference in virus titer was observed between the Wolbachia-positive and Wolbachia-cured groups. Conclusions These findings suggest that other mechanisms are involved in virus suppression within bed bugs, independent of the influence of Wolbachia, and our conclusions underscore the need for future research.


Author(s):  
M K Black ◽  
J G Chandler ◽  
R T Trout Fryxell ◽  
K M Vail

Abstract The common bed bug (Cimex lectularius L.) is a known pest and an obligate blood-feeding ectoparasite. Bed bugs can feed on warm-blooded animals including humans, bats, poultry, and rabbits, but no research has investigated the use of companion animals (canines and/or felines) as a blood source. This study investigates how long known host DNA could be detected in a bed bug and the prevalence of bed bugs feeding on companion animals. Laboratory-reared bed bugs were fed host blood to determine how long DNA of human, feline, canine, and rabbit blood could be detected up to 21 d postfeeding. Additionally, 228 bed bugs were collected from 12 apartments with pets (6: canine, 5: feline, and 1: canine and feline), characterized as engorged or unengorged, and then screened with host-specific primers to identify the bloodmeal. Host meals of human, rabbit, feline, and canine blood were detected up to 21 d after feeding laboratory strains. All bed bugs died after feeding on the canine blood, but DNA could be detected up to 21 d post feeding/death. Of the field-collected bed bugs analyzed, human DNA was amplified in 158 (69.3%) bed bugs, canine DNA amplified in 7 bed bugs (3.1%), and feline DNA amplified in 1 bed bug (0.4%). Results of this study suggest that bed bugs predominately feed on humans and rarely feed on companion animals when they cohabitate in low-income, high-rise apartments. Additionally, results from this study warrant future investigations into host use by bed bugs in different housing structures and socioeconomic environments.


Author(s):  
Raymond Berry

AbstractThe bed bug, Cimex lectularius L., is a common ectoparasite found to live among its vertebrate hosts. Antennal segments in bugs are critical for sensing multiple cues in the environment for survival. To determine whether the thermo receptors of bed bugs are located on their antennae; innovative bioassays were created to observe the choice between heated and unheated stimuli and to characterize the response of bugs to a heat source. Additionally, the effect of complete antenectomized segments on heat detection were evaluated. Heat, carbon dioxide, and moisture are cues that are found to activate bed bug behavior; a temperature at 38°C was used to assess the direction/degree at which the insect reacts to the change in distance from said stimulus. Using a lightweight spherical ball suspended by air through a vacuum tube, bed bugs and other insects are able to move in 360° while on a stationary point. Noldus EthoVision XT was used to capture video images and to track the bed bugs during 5-min bioassays. A bioassay was created using four Petri dish arenas to observe bed bug attraction to heat based on antennae segments at 40°C. The purpose of this study was to evaluate the effects of heat on complete antenectomized segments of the antennae. The results in this experiment suggest that bed bugs detect and are attracted to heat modulated by nutritional status. Learning the involvement of antennae segments in heat detection will help identify the location and role of thermoreceptors for bed bug host interaction.


2019 ◽  
Vol 56 (4) ◽  
pp. 903-906 ◽  
Author(s):  
Fariba Berenji ◽  
Ali Moshaverinia ◽  
Abbas Jadidoleslami ◽  
Aliakbar Shamsian ◽  
Stephen L Doggett ◽  
...  

Abstract The common bed bug, Cimex lectularius (Linnaeus 1758), is a nocturnal blood-sucking ectoparasite of humans that is highly prevalent in the northeast of Iran. In recent years, the efficacy of those insecticides that have been frequently used to control bed bugs in Iran has not been studied. Due to frequent complaints about bed bug treatment failures in Mashhad city (northeastern Iran), this study assessed the susceptibility of C. lectularius collected from a student residence hall to Diazinon, Malathion, and λ-cyhalothrin. The desired concentrations of each insecticide were prepared in acetone, and bioassays were performed using insecticide-impregnated filter paper method. The concentration–response data were subjected to POLO-PC software and data were analyzed by the log-probit procedure. The LC50 values of Diazinon and λ-cyhalothrin for examined bed bugs were 1,337.40 and 2,022.36 ppm, respectively. Malathion at the highest concentration (10,000 ppm) did not exhibit any toxicity to examined C. lectularius. Comparing these results to the same previous studies showed that susceptibility of examined bed bugs to these insecticides has been highly decreased. This study revealed an occurrence of insecticide resistance in bed bug populations in northeastern Iran. It also suggests that Malathion, Diazinon, and λ-cyhalothrin are ineffective against bed bugs in this region.


2019 ◽  
Vol 57 (1) ◽  
pp. 187-191 ◽  
Author(s):  
Nicholas R Larson ◽  
Aijun Zhang ◽  
Mark F Feldlaufer

Abstract Common bed bug Cimex lectularius (L.) (Hemiptera: Cimicidae) infestations are on the rise and due to the development of pesticide resistance they are becoming more difficult to control, affordably. We evaluated a naturally occurring compound methyl benzoate (MB) and related analogs, previously reported to have insecticidal activity on several agricultural pests, for its fumigant action on the common bed bug, C. lectularius L. A discriminating concentration was used to determine the effectiveness of MB, and several of its analogs as fumigants in a laboratory assay. It was found that MB provided >90% control of adult bed bugs in this laboratory fumigant assay. LC50 values were calculated for MB against both a pyrethroid-susceptible and a pyrethroid-resistant strain of common bed bugs. It was determined that both strains were susceptible in this laboratory assay. However, when MB was tested in a field-like assay and compared to a commercially available bed bug control product, it was found to be significantly less effective compared to the commercial product. Our study has found that while MB has the potential to be used as a bed bug control agent, refinements in the delivery system will be needed to increase efficacy under field-like conditions.


Scientifica ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Gale E. Ridge ◽  
Wade Elmer ◽  
Stephanie Gaines ◽  
Xiaolin Li ◽  
Danie Schlatzer ◽  
...  

Human bed bug infestations have undergone a recent global resurgence. The human antiparasitic drug ivermectin has been proposed as a strategy to help control bed bug infestations, but in vivo data are lacking. We allowed separate populations of the common bed bug, Cimex lectularius L., to feed once on a rabbit before and after it was injected subcutaneously with 0.3 mg/kg of ivermectin, and bed bug morbidity and mortality were recorded. Ivermectin levels in the rabbit were measured using high-performance liquid chromatography and mass spectroscopy. Ivermectin blood levels of ∼2 ng/mL caused reductions in bed bug fecundity, and levels of >8 ng/mL caused bed bug death and long-term morbidity including reductions in refeeding, mobility, reproduction, and molting. Gut bacterial cultures from the fed bed bugs showed that ivermectin altered the bed bug gut microbiome.


2020 ◽  
Vol 57 (4) ◽  
pp. 1199-1206
Author(s):  
Angela Sierras ◽  
Coby Schal

Abstract In the last two decades, bed bugs (Cimex lectularius L. and Cimex hemipterus F.) have become perennial and difficult to control indoor pests. Current pest control options are severely constrained by high prevalence of insecticide resistance and availability and relatively high costs of alternative interventions. Among various measures to counter the drawbacks of insecticide resistance include efforts to diversify the modes of action of insecticides with residual applications of combinations of insecticides, which include a juvenile hormone analog (JHA). JHAs, such as hydroprene and methoprene, have a desirable safety profile and are effective against a variety of indoor pests. We evaluated the potential of hydroprene and methoprene to be incorporated into an ingestible bait, with dose–response studies on fifth-instar male and female bed bugs. Females were more susceptible than males to both JHAs, and methoprene was more effective by ingestion than hydroprene at inducing both lethal and sublethal effects. Ingestion of ≥10 µg/ml blood of either JHA by last instar nymphs reduced oviposition; untreated females that mated with males exposed to high concentrations of either JHA also exhibited lower oviposition. We suggest that methoprene could be incorporated into integrated pest management programs in liquid baits and residual sprays in combination with other active ingredients.


2020 ◽  
Vol 55 (3) ◽  
pp. 344-349
Author(s):  
Nicholas R. Larson ◽  
Jaime Strickland ◽  
Aijun Zhang ◽  
Mark F. Feldlaufer

Abstract We evaluated a botanical compound, methyl benzoate, which was previously shown to have insecticidal activity on several agricultural pests, for its behavioral action on the common bed bug, Cimex lectularius L. Methyl benzoate, along with acetophenone and Cirkil™, a commercially available bed bug control product, exhibited repellent action against bed bugs in an EthoVision video system designed to track the movement of individuals.


Author(s):  
Xianhui Shi ◽  
Changlu Wang ◽  
James E Simon ◽  
William Reichert ◽  
Qingli Wu

Abstract The common bed bug, Cimex lectularius L., resurged as an important urban pest in the last 20 yr. Yet, there are no commercial repellent products labeled for bed bugs available in the United States. We evaluated the repellency of two catnip oils from newly developed cultivars, CR3 and CR9, and compared each to 10 and 25% N,N-diethyl-meta-toluamide (DEET). CR3 contains 63.4% E,Z-nepatalactone and 27.5% Z,E-nepatalactone, and CR9 contains 94.9% Z,E-nepatalactone. Arena studies showed that CR3 and CR9 oils were more effective than DEET within a 24-h period. At 10% concentration, both CR3 and CR9 oils exhibited a repellency of over 94% during the first 8 h. At 25% concentration, the repellency of CR3 and CR9 oils increased to 100%, and repellency of DEET was 92% during the first 24 h. Repellency of 25% CR3 and CR9 oils became lower than 25% DEET after being aged for 3 d. After 28-d aging, repellency of 25% CR3, CR9, and DEET reduced to 25, 64, and 92%, respectively. Soiled socks were placed above repellent treated bands to determine if the repellent can protect soiled socks from being infested. The 20% CR3 oil prevented 100% of bed bugs from infesting soiled socks showing that it was more effective than DEET. These results indicate that catnip oils from CR3 and CR9 cultivars are more repellent than DEET over a 24-h period following application, but their longevity is shorter than DEET after 72 h.


Sign in / Sign up

Export Citation Format

Share Document