scholarly journals A 4-Yr Survey of the Range of Ticks and Tick-Borne Pathogens in the Lehigh Valley Region of Eastern Pennsylvania

2019 ◽  
Vol 56 (4) ◽  
pp. 1122-1134 ◽  
Author(s):  
Marten J Edwards ◽  
James C Russell ◽  
Emily N Davidson ◽  
Thomas J Yanushefski ◽  
Bess L Fleischman ◽  
...  

AbstractQuesting ticks were surveyed by dragging in forested habitats within the Lehigh Valley region of eastern Pennsylvania for four consecutive summers (2015–2018). A high level of inter-annual variation was found in the density of blacklegged tick nymphs, Ixodes scapularis Say, with a high density of host-seeking nymphs (DON) in summer 2015 and 2017 and a relatively low DON in summer 2016 and 2018. Very few American dog ticks (Dermacentor variabilis Say) and Ixodes cookei Packard were collected. Lone star ticks (Amblyomma americanum L.) and longhorned ticks (Haemaphysalis longicornis Neumann) were not represented among the 6,398 ticks collected. For tick-borne pathogen surveillance, DNA samples from 1,721 I. scapularis nymphs were prepared from specimens collected in summers 2015–2017 and screened using qPCR, high resolution melting analysis, and DNA sequencing when necessary. The overall 3-yr nymphal infection prevalence of Borrelia burgdorferi was 24.8%, Borrelia miyamotoi was 0.3%, Anaplasma phagocytophilum variant-ha was 0.8%, and Babesia microti was 2.8%. Prevalence of coinfection with B. burgdorferi and B. microti as well as B. burgdorferi and A. phagocytophilum variant-ha were significantly higher than would be expected by independent infection. B. burgdorferi nymphal infection prevalence is similar to what other studies have found in the Hudson Valley region of New York, but levels of B. microti and A. phagocytophilum variant-ha nymphal infection prevalence are relatively lower. This study reinforces the urgent need for continued tick and pathogen surveillance in the Lehigh Valley region.

2020 ◽  
Author(s):  
Danielle M. Tufts ◽  
Laura B. Goodman ◽  
Meghan C. Benedict ◽  
April D. Davis ◽  
Meredith C. VanAcker ◽  
...  

AbstractHaemaphysalis longicornis, the Asian longhorned tick, is an invasive ixodid tick that has rapidly spread across the northeastern and southeastern regions of the United States since first reported in 2017. The emergence of H. longicornis presents a potential threat for livestock, wildlife, and human health as the host associations and vector potential of this invasive pest in the United States are poorly understood. Previous field data from the United States has shown that H. longicornis was not associated with natural populations of small mammals or birds, but they show a preference for medium sized mammals in laboratory experiments. Therefore, medium and large sized mammals were sampled on Staten Island, New York to determine H. longicornis host associations and vector potential for a range of human and veterinary pathogens. A total of 97 hosts were sampled and five species of tick (Amblyomma americanum, Dermacentor variabilis, H. longicornis, Ixodes scapularis, Ixodes cookei) were found feeding concurrently on these hosts. Haemaphysalis longicornis was found in the highest proportions compared to other native tick species on raccoons (55.4%), Virginia opossums (28.9%), and white-tailed deer (11.5%). Tissue, blood, and engorged larvae were tested for 17 different pathogens using a nanoscale PCR platform. Infection with five pathogens (Borrelia burgdorferi, Anaplasma phagocytophilum, Rickettsia spp., Mycoplasma haemocanis, and Bartonella spp.) was detected in host samples, but no pathogens were found in any larval samples. These results suggest that although large and medium sized mammals feed large numbers of H. longicornis ticks in the environment there is presently a low potential for H. longicornis to acquire pathogens from these wildlife hosts.HighlightsH. longicornis were sampled from seven genera of large and medium-sized mammalsRaccoons, opossums, and white-tailed deer fed a large proportion of H. longicornisH. longicornis did not acquire pathogens through co-feeding with native tick vectorsHost species were infected with a range of pathogens of human and veterinary concernHost-derived H. longicornis engorged larvae were not infected with any pathogens


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
F. Keesing ◽  
D. J. McHenry ◽  
M. H. Hersh ◽  
R. S. Ostfeld

AbstractBorrelia miyamotoi, a bacterium that causes relapsing fever, is found in ixodid ticks throughout the northern hemisphere. The first cases of human infection with B. miyamotoi were identified in 2011. In the eastern USA, blacklegged ticks (Ixodes scapularis) become infected by feeding on an infected vertebrate host, or through transovarial transmission. We surveyed B. miyamotoi prevalence in ticks within forested habitats in Dutchess County, New York, and identified possible reservoir hosts. To assess spatial variation in infection, we collected questing nymphal ticks at > 150 sites. To assess temporal variation in infection, we collected questing nymphs for 8 years at a single study site. We collected questing larval ticks from nine plots to estimate the amount of transovarial transmission. To evaluate potential reservoir hosts, we captured 14 species of mammal and bird hosts naturally infested with larval blacklegged ticks and held these hosts in the laboratory until ticks fed to repletion and molted to nymphs. We determined infection for all ticks using quantitative polymerase chain reaction. The overall infection prevalence of questing nymphal ticks across all sites was ~ 1%, but prevalence at individual sites was as high as 9.1%. We detected no significant increase in infection through time. Only 0.4% of questing larval ticks were infected. Ticks having fed as larvae from short-tailed shrews, red squirrels, and opossums tended to have higher infection prevalence than did ticks having fed on other hosts. Further studies of the role of hosts in transmission are warranted. The locally high prevalence of B. miyamotoi in the New York/New England landscape suggests the importance of vigilance by health practitioners and the public.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1037
Author(s):  
Brenden G. Tully ◽  
Jason F. Huntley

Nearly 100 years after the first report of tick-borne tularemia, questions remain about the tick vector(s) that pose the greatest risk for transmitting Francisella tularensis (Ft), the causative agent of tularemia. Additionally, few studies have identified genes/proteins required for Ft to infect, persist, and replicate in ticks. To answer questions about vector competence and Ft transmission by ticks, we infected Dermacentor variabilis (Dv),Amblyomma americanum (Aa), and Haemaphysalis longicornis (Hl; invasive species from Asia) ticks with Ft, finding that although Aa ticks initially become infected with 1 order of magnitude higher Ft, Ft replicated more robustly in Dv ticks, and did not persist in Hl ticks. In transmission studies, both Dv and Aa ticks efficiently transmitted Ft to naïve mice, causing disease in 57% and 46% of mice, respectively. Of four putative Ft chitinases, FTL1793 is the most conserved among Francisella sp. We generated a ΔFTL1793 mutant and found that ΔFTL1793 was deficient for infection, persistence, and replication in ticks. Recombinant FTL1793 exhibited chitinase activity in vitro, suggesting that FTL1793 may provide an alternative energy source for Ft in ticks. Taken together, Dv ticks appear to pose a greater risk for harboring and transmitting tularemia and FTL1793 plays a major role in promoting tick infections by Ft.


mSphere ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Rafal Tokarz ◽  
Stephen Sameroff ◽  
Teresa Tagliafierro ◽  
Komal Jain ◽  
Simon H. Williams ◽  
...  

ABSTRACT Ticks carry a wide range of known human and animal pathogens and are postulated to carry others with the potential to cause disease. Here we report a discovery effort wherein unbiased high-throughput sequencing was used to characterize the virome of 2,021 ticks, including Ixodes scapularis ( n = 1,138), Amblyomma americanum ( n = 720), and Dermacentor variabilis ( n = 163), collected in New York, Connecticut, and Virginia in 2015 and 2016. We identified 33 viruses, including 24 putative novel viral species. The most frequently detected viruses were phylogenetically related to members of the Bunyaviridae and Rhabdoviridae families, as well as the recently proposed Chuviridae . Our work expands our understanding of tick viromes and underscores the high viral diversity that is present in ticks. IMPORTANCE The incidence of tick-borne disease is increasing, driven by rapid geographical expansion of ticks and the discovery of new tick-associated pathogens. The examination of the tick microbiome is essential in order to understand the relationship between microbes and their tick hosts and to facilitate the identification of new tick-borne pathogens. Genomic analyses using unbiased high-throughput sequencing platforms have proven valuable for investigations of tick bacterial diversity, but the examination of tick viromes has historically not been well explored. By performing a comprehensive virome analysis of the three primary tick species associated with human disease in the United States, we gained substantial insight into tick virome diversity and can begin to assess a potential role of these viruses in the tick life cycle.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Santiago Sanchez-Vicente ◽  
Teresa Tagliafierro ◽  
James L. Coleman ◽  
Jorge L. Benach ◽  
Rafal Tokarz

ABSTRACT Tick-borne diseases have doubled in the last 12 years, and their geographic distribution has spread as well. The clinical spectrum of tick-borne diseases can range from asymptomatic to fatal infections, with a disproportionate incidence in children and the elderly. In the last few years, new agents have been discovered, and genetic changes have helped in the spread of pathogens and ticks. Polymicrobial infections, mostly in Ixodes scapularis, can complicate diagnostics and augment disease severity. Amblyomma americanum ticks have expanded their range, resulting in a dynamic and complex situation, possibly fueled by climate change. To document these changes, using molecular biology strategies for pathogen detection, an assessment of 12 microbes (9 pathogens and 3 symbionts) in three species of ticks was done in Suffolk County, New York. At least one agent was detected in 63% of I. scapularis ticks. Borrelia burgdorferi was the most prevalent pathogen (57% in adults; 27% in nymphs), followed by Babesia microti (14% in adults; 15% in nymphs), Anaplasma phagocytophilum (14% in adults; 2% in nymphs), Borrelia miyamotoi (3% in adults), and Powassan virus (2% in adults). Polymicrobial infections were detected in 22% of I. scapularis ticks, with coinfections of B. burgdorferi and B. microti (9%) and of B. burgdorferi and A. phagocytophilum (7%). Three Ehrlichia species were detected in 4% of A. americanum ticks. The rickettsiae constituted the largest prokaryotic biomass of all the ticks tested and included Rickettsia amblyommatis, Rickettsia buchneri, and Rickettsia montanensis. The high rates of polymicrobial infection in ticks present an opportunity to study the biological interrelationships of pathogens and their vectors. IMPORTANCE Tick-borne diseases have increased in prevalence in the United States and abroad. The reasons for these increases are multifactorial, but climate change is likely to be a major factor. One of the main features of the increase is the geographic expansion of tick vectors, notably Amblyomma americanum, which has brought new pathogens to new areas. The clinical spectrum of tick-borne diseases can range from asymptomatic to fatal infections, with a disproportionate incidence in children and the elderly. In addition, new pathogens that are cotransmitted by Ixodes scapularis have been discovered and have led to difficult diagnoses and to disease severity. Of these, Borrelia burgdorferi, the agent of Lyme disease, continues to be the most frequently transmitted pathogen. However, Babesia microti, Borrelia miyamotoi (another spirochete), Anaplasma phagocytophilum, and Powassan virus are frequent cotransmitted agents. Polymicrobial infection has important consequences for the diagnosis and management of tick-borne diseases.


2021 ◽  
Author(s):  
Erin Hassett ◽  
Maria Diuk-Wasser ◽  
Laura Harrington ◽  
Maria del Pilar Fernandez

Abstract Background Public green spaces are important for human health, but they may expose visitors to ticks and tick-borne pathogens. We sought to understand risk and drivers of tick-preventative behavior in three popular parks on Staten Island, NY, USA by integrating tick hazard and park visitors’ behaviors. Methods From 20 May to 19 August 2019, ticks were collected via drag cloth sampling in multiple parks, sites, and habitats to estimate tick density. Human behavior was assessed by observing usage (time spent and activity type) in each site and habitat. To evaluate risk of tick exposure, we compared park usage by demographics across sites and compared individual exposure time per site and habitat. To assess visitors’ tick prevention behaviors, a knowledge, attitude, and practices (KAP) survey was administered. Results Three tick species (Ixodes scapularis, Amblyomma americanum and Haemaphysalis longicornis) were collected. The density of nymphs was heterogenous across parks, with the greatest density in unmaintained herbaceous habitats and trails. The fewest people entered the highest tick risk park and within-park locations. The KAP survey revealed that most respondents (N= 190) could not identify a nymphal stage tick when shown examples of various arthropods. Interviewees identified parks as the main location for tick exposure, but most believed they themselves had minimal risk for tick encounter. Consequently, many visitors did not conduct tick checks. People were most likely to practice tick checks if they knew multiple prevention methods and perceived a high likelihood of tick encounter. Conclusions By integrating acarological indices and park visitor behaviors we found a mismatch between the areas with higher tick densities and areas more frequently used by park visitors. However, this exposure risk varied among demographic groups and the type of activities. Moreover, the use of preventative measures was associated with the perceived probability of tick encounter and knowledge of tick habitat, which would modify the ultimate risk of tick encounter and disease given exposure. Our research is a first step towards identifying visitor risk, attitudes, and practices that could be targeted by optimized messaging strategies for tick bite prevention among park visitors.


Author(s):  
Daniel C Mathisson ◽  
Sara M Kross ◽  
Matthew I Palmer ◽  
Maria A Diuk-Wasser

Abstract Tick-borne illnesses have been on the rise in the United States, with reported cases up sharply in the past two decades. In this literature review, we synthesize the available research on the relationship between vegetation and tick abundance for four tick species in the northeastern United States that are of potential medical importance to humans. The blacklegged tick (Ixodes scapularis) (Say; Acari: Ixodidae) is found to be positively associated with closed canopy forests and dense vegetation thickets, and negatively associated with open canopy environments, such as grasslands or old agricultural fields. The American dog tick (Dermacentor variabilis) (Say; Acari: Ixodidae) has little habitat overlap with I. scapularis, with abundance highest in grasses and open-canopy fields. The lone star tick (Amblyomma americanum) (Linnaeus; Acari: Ixodidae) is a habitat generalist without consistent associations with particular types of vegetation. The habitat associations of the recently introduced Asian longhorned tick (Haemaphysalis longicornis) (Neumann; Acari: Ixodidae) in the northeastern United States, and in other regions where it has invaded, are still unknown, although based on studies in its native range, it is likely to be found in grasslands and open-canopy habitats.


Author(s):  
Jason F. Huntley ◽  
Brenden Tully

Tick-borne tularemia was first described in 1924. Nearly 100 years later, questions remain about the tick vector(s) that pose(s) the greatest risk for transmitting Francisella tularensis (Ft), the causative agent of tularemia. Additionally, few studies have identified genes/proteins required for Ft to infect, persist, and replicate in ticks. To answer questions about vector competence and Ft transmission by ticks, we infected Dermacentor variabilis (Dv), Amblyomma americanum (Aa), and Haemaphysalis longicornis (Hl; invasive species from Asia) ticks with Ft, finding that although Aa ticks initially become infected with 1-log higher Ft, Ft replicated more robustly in Dv ticks, and did not persist in Hl ticks. In transmission studies, both Dv and Aa ticks efficiently infected naïve mice, causing disease in 57% and 46% of those mice, respectively. We identified a putative Ft chitinase, FTL1793, generated a FTL1793 mutant, and found that FTL1793 was deficient in tick infection, persistence, and replication in ticks. Recombinant FTL1793 exhibited chitinase activity in vitro, suggesting that this chitinase may provide an alternative energy source for Ft in ticks. Taken together, Dv ticks appear to pose a greater risk for harboring and transmitting tularemia and FTL1793 plays a major role in promoting tick infections by Ft.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Meriam N. Saleh ◽  
Kellee D. Sundstrom ◽  
Kathryn T. Duncan ◽  
Michelle M. Ientile ◽  
Julia Jordy ◽  
...  

Abstract Background A variety of tick species infest dogs and cats in North America. Although most of these species also readily feed on people, national data regarding the species and abundance of ticks on dogs and cats are lacking. Here we report a large-scale study of ticks from dogs and cats in the USA over a 12-month period. Methods Tick submissions were invited from veterinary practices in all 50 states. Ticks were submitted with information about the pet and the attachment sites of each tick marked on a biopsy chart. Upon receipt, ticks were identified to species and stage using morphologic keys; when necessary, species identification was confirmed molecularly. Results From February 2018 through January 2019, 10,978 ticks were submitted from 1494 dogs and 336 cats in 49 states and ticks were collected in every month. Dog and cat infestation intensities ranged from 1 to 4765 and from 1 to 38 (median = 1, mean = 6.7 and 2.6), respectively. Dogs were primarily infested with Dermacentor variabilis (532/1494; 35.6%), Ixodes scapularis (409/1494; 27.4%), Amblyomma americanum (345/1494; 23.1%) and Rhipicephalus sanguineus (172/1494; 11.5%). Cats were primarily infested with I. scapularis (156/336; 46.4%), A. americanum (99/336; 29.5%) and D. variabilis (60/336; 17.9%). Other submitted ticks included A. maculatum, Haemaphysalis longicornis, Otobius megnini, and less common Dermacentor spp. and Ixodes spp. Co-infestations were documented in 93 dogs and 14 cats. Reported attachment sites of common tick species differed. In dogs, A. americanum was most commonly attached to the abdomen, axillary, and inguinal regions; D. variabilis and I. scapularis to the head, neck, and back; and R. sanguineus to the head, neck, abdomen, legs, and feet. In cats, I. scapularis was most commonly attached to the head and A. americanum was most commonly attached to the tail and perianal region. Conclusions These data confirm that dogs and cats in the USA are at risk of tick infestation throughout the year and that tick species present in the region have apparent attachment site preferences.


Sign in / Sign up

Export Citation Format

Share Document