Changes in vegetation and soil properties following 6 years of enclosure in riparian corridors

2020 ◽  
Vol 13 (2) ◽  
pp. 131-138
Author(s):  
Di Wang ◽  
Yi-Ran Zhang ◽  
Yu-Long Feng ◽  
Zhi Liu ◽  
Bo Qu

Abstract Aims Riparian corridors play vital roles in the maintenance of biodiversity. Nonetheless, plant species diversity and vegetation coverage in riparian corridors are seriously threatened by increasing pressure owing to livestock consumption and anthropogenic disturbance; even the stability of river courses has been threatened. The establishment of enclosures is a widely used strategy to restore degraded grassland ecosystems, but its impact on degraded herbaceous riparian vegetation and soil properties remains unclear. The aim of this study was to evaluate whether species composition, richness, diversity, and soil properties can be recovered by the enclosure. Methods Twenty long-term monitoring sample plots were set in the Liaohe main stream river, Liaohe main stream river was enclosed for grazing and farmland exclusion in 2012. The height, coverage and individual numbers of plant were recorded for species richness and diversity evaluation from 2012 to 2017; soil nutrients were measured for comparative analysis in 2012 and 2017. We examined the effects of the establishment of enclosures on plant species diversity and soil properties from 2012 to 2017 in the riparian corridors of the Liaohe River system in China. Important Findings Plant species richness and diversity significantly increased from 2012 to 2017. The dominance of Asteraceae plants increased, while the abundance of Gramineae plants decreased over time. The difference in abundance increased each year since enclosure was implemented in 2012. The concentrations of phosphorus and potassium in the soil significantly decreased as a result of the combined effects of vegetation restoration and prohibition of farming practices following the establishment of enclosures. There was also a lag time related to the response of soil organic matter to the establishment of enclosures. In conclusion, our study provides new evidence regarding the response of species diversity, species composition and soil properties following riparian vegetation restoration efforts through enclosure development.

2021 ◽  
Author(s):  
Gelareh Valadi ◽  
Javad Eshaghi Rad ◽  
Yahia Khodakarami ◽  
Mostafa Nemati Peykani ◽  
Karen A. Harper

Abstract Aims Forest edges have been well studied in temperate and tropical forests, but less so in open canopy forests. We investigated edge influence on plant species diversity and soil properties in sparse oak forest fragments. Methods Data were collected along three transects from the edge to the interior of three small (under 10 ha) and three large (over 10 ha) oak forest fragments in Kermanshah province, Iran. We measured herbaceous plants (< 0.5 m in height) and soil attributes at 0 (forest edge), 25, 50, 100 and 150 m. We quantified species diversity using the Shannon index, used rarefaction to compare species richness between two different sizes of fragments and applied non-metric multidimensional scaling ordination to investigate the variation in species composition. We estimated the distance of edge influence using randomization tests. Generalized linear mixed models with post-hoc Tukey's HSD tests were used to assess the effects of distance from edge and fragment size on diversity and soil properties. Important findings We found greater species richness, diversity and evenness at the edge of both small and large fragments, and lower nitrogen and organic carbon at the edge compared to the interior of large fragments, with most changes within 50 m of the edge. Species composition, organic carbon and total nitrogen were significantly different between small and large fragments. Our findings of significant edge influence on herbaceous plants and soil properties in these sparse forests provide a significant contribution to the literature on edges, especially in relation to herbaceous plants.


Botany ◽  
2008 ◽  
Vol 86 (12) ◽  
pp. 1416-1426 ◽  
Author(s):  
Amy C. Ganguli ◽  
David M. Engle ◽  
Paul M. Mayer ◽  
Eric C. Hellgren

Widespread encroachment of the fire-intolerant species Juniperus virginiana  L. into North American grasslands and savannahs where fire has largely been removed has prompted the need to identify mechanisms driving J. virginiana encroachment. We tested whether encroachment success of J. virginiana is related to plant species diversity and composition across three plant communities. We predicted J. virginiana encroachment success would (i) decrease with increasing diversity, and (ii) J. virginiana encroachment success would be unrelated to species composition. We simulated encroachment by planting J. virginiana seedlings in tallgrass prairie, old-field grassland, and upland oak forest. We used J. virginiana survival and growth as an index of encroachment success and evaluated success as a function of plant community traits (i.e., species richness, species diversity, and species composition). Our results indicated that J. virginiana encroachment success increased with increasing plant richness and diversity. Moreover, growth and survival of J. virginiana seedlings was associated with plant species composition only in the old-field grassland and upland oak forest. These results suggest that greater plant species richness and diversity provide little resistance to J. virginiana encroachment, and the results suggest resource availability and other biotic or abiotic factors are determinants of J. virginiana encroachment success.


2020 ◽  
Vol 153 (2) ◽  
pp. 208-218 ◽  
Author(s):  
Jaquelina A. Nunes ◽  
Pedro M. Villa ◽  
Andreza V. Neri ◽  
Wesley A. Silva ◽  
Carlos E.G.R. Schaefer

Background and aims – Seasonality exerts strong controlling forces on species diversity in herbaceous species communities, however, this control process remains poorly understood in tropical lithologically different rocky outcrops. We aim to investigate the effect of seasonality and the variability of soil properties on changes in the herbaceous species richness and species composition of two different herbaceous species communities on rocky outcrops in Brazil. We hypothesize that seasonality, determined by variation in precipitation, and soil fertility, determined by variability in nutrient-related soil properties, drives species diversity (i.e., richness and beta diversity) patterns of herbaceous communities at local scale.Methods – To investigate how the variation between dry and wet seasons affects species richness and beta diversity, we studied plots on rocky outcrops of Iron Quadrangle (40 plots, 1 × 1 m) and Carajás (20 plots, 1 × 1 m). Key results – We observed similar richness patterns between seasons, without significant differences between sites, using rarefaction and extrapolation curves. However, we observed significant differences in beta diversity between seasons. Our results indicate that seasonality determines the temporal variation of the herbaceous species composition, but not species richness. Likewise, our tested models indicated that seasonality shape beta diversity in the studied rocky outcrops. Conclusions – The predictable seasonal precipitation is closely related to the community composition on this type of rocky outcrop formation, where there typically is a marked seasonal water deficit pattern, with increased deficit during the dry season. We presume that seasonality is an important driver in determining plant community assembly at local scale on the studied rocky outcrops.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Leake Belay ◽  
Emiru Birhane ◽  
Amanuel Zenebe ◽  
Askal Weldu ◽  
Stella Nwawulu Chiemela ◽  
...  

2018 ◽  
Vol 25 (24) ◽  
pp. 24101-24110 ◽  
Author(s):  
Jun Wang ◽  
Xinghua Luo ◽  
Yifan Zhang ◽  
Yanhong Huang ◽  
Manikandan Rajendran ◽  
...  

2015 ◽  
Vol 27 (4) ◽  
pp. 1151-1162 ◽  
Author(s):  
Javier Hedo de Santiago ◽  
Manuel Esteban Lucas-Borja ◽  
Consuelo Wic-Baena ◽  
Manuela Andrés-Abellán ◽  
Jorge de las Heras

2021 ◽  
Vol 9 (1-2) ◽  
pp. 91-108
Author(s):  
Saiful Islam ◽  
Shayla Sharmin Shetu ◽  
Md Abdur Rahim ◽  
Saleh Ahammad Khan

This study has confirmed the occurrence of a total of 181 species of vascular plants under 133 genera and 51 families and estimates the plant species diversity in and around the brickfield areas of Savar-Dhamrai region of Dhaka district. Of these, six species were pteridophytes, 175 were Angiosperms, and 144 species were economically important. Five families, composed of six species, belonged to Pteridophyta, 40 families, consist of 128 species, to Magnoliopsida (dicotyledons) and six families, comprised of 47 species, to Liliopsida (monocotyledons). Total of 161 species were herbs, 14 were shrubs, and only six were trees. Asteraceae with 14 species and Poaceae with 24 species were the largest family in Magnoliopsida and Liliopsida, respectively. Amaranthus L., Persicaria (L.) Mill., Solanum L. and Lindernia All. with four species each were appeared as the best representative genera in Mangoliopsida, while Cyperus L. with five species in Liliopsida. The species composition and diversity of abandoned brickfields were found to be higher than those of functional brickfields. A total of 42 (23.20%) species were common in both abandoned and functional brickfields of this region. Species composition in the abandoned brickfields of Savar and Dhamrai was mostly similar (64.15%). This study suggests to control and monitor the brickfields under the respective authorities to favor the formation and regeneration of natural vegetation in their neighboring areas. Jahangirnagar University J. Biol. Sci. 9(1 & 2): 91-108, 2020 (June & December)


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4359 ◽  
Author(s):  
Xing Wang ◽  
Xinguo Yang ◽  
Lei Wang ◽  
Lin Chen ◽  
Naiping Song ◽  
...  

Excluding grazers is one of most efficient ways to restore degraded grasslands in desert-steppe communities, but may negatively affect the recovery of plant species diversity. However, diversity differences between grazed and fenced grasslands in desert-steppe are poorly known. In a Stipa breviflora desert steppe community in Northern China, we established six plots to examine spatial patterns of plant species diversity under grazed and fenced conditions, respectively. We addressed three aspects of species diversity: (1) The logistic, exponential and power models were used to describe the species-area curve (SAR). Species richness, abundance and Shannon diversity values change differently with increasing sampling areas inside and outside of the fence. The best fitted model for SAR was the logistic model. Excluding grazers had a significant impact on the shape of SAR. (2) Variograms was applied to examine the spatial characteristics of plant species diversity. We found strong spatial autocorrelations in the diversity variables both inside and outside the fence. After grazing exclusion, the spatial heterogeneity decreased in species richness, increased in abundance and did not change in Shannon diversity. (3) We used variance partitioning to determine the relative contributions of spatial and environmental factors to plant species diversity patterns. Environmental factors explained the largest proportion of variation in species diversity, while spatial factors contributed little. Our results suggest that grazing enclosures decreased species diversity patterns and the spatial pattern of the S. breviflora desert steppe community was predictable.


Sign in / Sign up

Export Citation Format

Share Document