scholarly journals Curtailing patient-specific IMRT QA procedures from 2D dose error distribution

2016 ◽  
Vol 57 (3) ◽  
pp. 258-264 ◽  
Author(s):  
Keita Kurosu ◽  
Iori Sumida ◽  
Hirokazu Mizuno ◽  
Yuki Otani ◽  
Michio Oda ◽  
...  

Abstract A patient-specific quality assurance (QA) test is conducted to verify the accuracy of dose delivery. It generally consists of three verification processes: the absolute point dose difference, the planar dose differences at each gantry angle, and the planar dose differences by 3D composite irradiation. However, this imposes a substantial workload on medical physicists. The objective of this study was to determine whether our novel method that predicts the 3D delivered dose allows certain patient-specific IMRT QAs to be curtailed. The object was IMRT QA for the pelvic region with regard to point dose and composite planar dose differences. We compared measured doses, doses calculated in the treatment planning system, and doses predicted by in-house software. The 3D predicted dose was reconstructed from the per-field measurement by incorporating the relative dose error distribution into the original dose grid of each beam. All point dose differences between the measured and the calculated dose were within ±3%, whereas 93.3% of them between the predicted and the calculated dose were within ±3%. As for planar dose differences, the gamma passing rates between the calculated and the predicted dose were higher than those between the calculated and the measured dose. Comparison and statistical analysis revealed a correlation between the predicted and the measured dose with regard to both point dose and planar dose differences. We concluded that the prediction-based approach is an accurate substitute for the conventional measurement-based approach in IMRT QA for the pelvic region. Our novel approach will help medical physicists save time on IMRT QA.

Author(s):  
S Singh ◽  
P Raina ◽  
O P Gurjar

Background: Nowadays, advanced radiotherapy equipment includes algorithms to calculate dose. The verification of the calculated doses is important to achieve accurate results. Mostly homogeneous dosimetric phantoms are available commercially which do not mimic the actual patient anatomy; therefore, an indigenous heterogeneous pelvic phantom mimicking actual human pelvic region has been used to verify the doses calculated by different algorithms.Objective: This study aims to compare the planed dose using different algorithms with measured dose using an indigenous heterogeneous pelvic phantom.Material and Methods: Various three dimensional conformal radiotherapy (3D-CRT) plans were made using different dose calculated by algorithms. The plans were delivered by medical linear accelerator and doses were measured by ion chamber placed in the indigenous pelvic phantom. Planned and measured doses were compared with together and analyzed.Results: The relative electron densities of different parts in the pelvic phantom were found to be in good agreement with that of actual pelvic parts, including bladder, rectum, fats and bones. The highest percentage deviations between planned and measured dose were calculated in the single field for Superposition algorithm (3.09%) and single field with 45˚wedge for Superposition (3.04%). The least percentage deviation was calculated in the opposite field for Convolution which was - 0.08%. The results were within the range of ±5% as recommended by International Commission on Radiation Units and Measurement.Conclusion: The cost-effective indigenous heterogeneous pelvic phantom has the density pattern similar to the actual pelvic region; thus, it can be used for routine patient-specific quality assurance.


2021 ◽  
Vol 19 (11) ◽  
pp. 141-150
Author(s):  
Ahmed H. Waheeb ◽  
Zeinab Eltaher ◽  
Mohamed N. Yassin ◽  
Magdy M. Khalil

This study examined the gamma passing rate (GPR) consistency during applying different kinds of gamma analyses and dosimeters to IMRT. Methods: Import treatment protocols for QA phantom irradiation have been recalculated. A gamma analysis was used for comparing the measured and calculated dose distribution of IMRT for different gamma criteria (2%/2mm, 3%/3mm, 4%/4mm, 3%/5mm, 3%/5mm). These criteria are evaluated when 5%, 10%, or 15% of the dose distribution is suppressed. Measured and calculated dose distribution was evaluated with gamma analysis to dose difference (DD) with DTA criteria (distance to agreement). IMRT QA plans to 25 patients from various sites were formed with the Varian Eclipse treatment planning system. Results: Results indicate different diverse hardware and software combinations show varied levels of agreement with expected analysis for the same pass-rate criterion. For a dosimetry audit of the IMRT technique, an EPID detector is superior to conventional methods comparable to Gafchromic EPT3 film and 2D array due to cost, time-consuming, and set up error to get result analysis. The gamma passing rate (GPR) average is increased by increasing the low-dose threshold for different dosimetric tools. For EPID, regardless of the gamma criterion employed, the %GP does not appear to be dependent on the low-dose threshold values (5%-15%) because it indicates that fulfilment the low-dose threshold to global normalization has little effect on patient-specific QA outcomes. Conclusions: It is concluded that GPRs differ depending on gamma, dosimetric tools, and the suppressing dose ratio. To get the best results of quality assurance, each institution should thus carefully develop its procedure for gamma analysis by defining the gamma index analysis and gamma criterion using its dosimetric tools.


2018 ◽  
Vol 18 (02) ◽  
pp. 210-214
Author(s):  
R. P. Srivastava ◽  
C. De Wagter

AbstractPurposeIn advanced radiotherapy techniques such as intensity-modulated radiation therapy (IMRT), the quality assurance (QA) process is essential. The aim of the study was to assure the treatment planning dose delivered during delivery of complex treatment plans. The QA standard is to perform patient-specific comparisons between planned doses and doses measured in a phantom.Materials and methodThe Delta 4 phantom (Scandidos, Uppsala, Sweden) has been used in this study. This device consists of diode matrices in two orthogonal planes inserted in a cylindrical acrylic phantom. Each diode is sampled per beam pulse so that the dose distribution can be evaluated on segment-by-segment, beam-by-beam, or as a composite plan from a single set of measurements. Ninety-five simple and complex radiotherapy treatment plans for different pathologies, planned using a treatment planning system (TPS) were delivered to the QA device. The planned and measured dose distributions were then compared and analysed. The gamma index was determined for different pathologies.ResultsThe evaluation was performed in terms of dose deviation, distance to agreement and gamma index passing rate. The measurements were in excellent agreement between with the calculated dose of the TPS and the QA device. Overall, good agreement was observed between measured and calculated doses in most cases with gamma values above 1 in >95% of measured points. Plan results for each test met the recommended dose goals.ConclusionThe delivery of IMRT and volumetric-modulated arc therapy (VMAT) plans was verified to correspond well with calculated dose distributions for different pathologies. We found the Delta 4 device is accurate and reproducible. Although Delta4 appears to be a straightforward device for measuring dose and allows measure in real-time dosimetry QA, it is a complex device and careful quality control is required before its use.


2020 ◽  
Vol 189 (1) ◽  
pp. 127-135
Author(s):  
Pradip Kumar ◽  
Sunil Dutt Sharma ◽  
Bhushan Dhabekar ◽  
Devesh Ramdhar Mishra ◽  
Narender Singh Rawat ◽  
...  

Abstract Circular discs of diameter 5 mm were made from three indigenously developed optically stimulated luminescent (OSL) phosphors for medical dosimetry. Dosimetric characteristics of these discs were evaluated for their use in machine and patient-specific dosimetry in radiotherapy. Uncertainty in dosimetric measurements using these discs was also estimated, and combined standard uncertainty in measurement of absorbed dose was found to be 3.34%. Characterisation studies indicate that OSL discs are suitable for dosimetric application in radiotherapy. These discs were also used for patient-specific dosimetry in conventional and conformal radiotherapy treatments (five different cases) vis-à-vis ionisation chamber and Gafchromic EBT3 film. Doses measured by OSL discs were found comparable to ionisation chamber and Gafchromic EBT3 film measured values and radiotherapy treatment planning system (TPS) calculated dose values in all the cases. The variation between TPS calculated dose values and OSL discs measured dose values was found within the measurement uncertainty.


2019 ◽  
Vol 6 (2) ◽  
pp. 31-41
Author(s):  
Jiankui Yuan ◽  
David Mansur ◽  
Min Yao ◽  
Tithi Biswas ◽  
Yiran Zheng ◽  
...  

ABSTRACT Purpose: We developed an integrated framework that employs a full Monte Carlo (MC) model for treatment-plan simulations of a passive double-scattering proton system. Materials and Methods: We have previously validated a virtual machine source model for full MC proton-dose calculations by comparing the percentage of depth-dose curves, spread-out Bragg peaks, and lateral profiles against measured commissioning data. This study further expanded our previous work by developing an integrate framework that facilitates its clinical use. Specifically, we have (1) constructed patient-specific applicator and compensator numerically from the plan data and incorporated them into the beamline, (2) created the patient anatomy from the computed tomography image and established the transformation between patient and machine coordinate systems, and (3) developed a graphical user interface to ease the whole process from importing the treatment plan in the Digital Imaging and Communications in Medicine format to parallelization of the MC calculations. End-to-end tests were performed to validate the functionality, and 3 clinical cases were used to demonstrate clinical utility of the framework. Results: The end-to-end tests demonstrated that the framework functioned correctly for all tested functionality. Comparisons between the treatment planning system calculations and MC results in 3 clinical cases revealed large dose difference up to 17%, especially in the beam penumbra and near the end of beam range. The discrepancy likely originates from a variety of sources, such as the dose algorithms, modeling of the beamline, and the dose metric. The agreement for other regions was acceptable. Conclusion: An integrated framework was developed for full MC simulations of double-scattering proton therapy. It can be a valuable tool for dose verification and plan evaluation.


2018 ◽  
Vol 17 (4) ◽  
pp. 441-446 ◽  
Author(s):  
Jalil ur Rehman ◽  
Muhammad Isa ◽  
Nisar Ahmad ◽  
H. M. Noor ul Huda Khan Asghar ◽  
Zaheer A. Gilani ◽  
...  

AbstractBackgroundAccurate three-dimensional dosimetry is essential in modern radiotherapy techniques such as volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). In this research work, the PRESAGE® dosimeter was used as quality assurance (QA) tool for VMAT planning for head and neck (H&N) cancer.Material and methodComputer tomography (CT) scans of an Image Radiation Oncology Core (IROC) H&N anthropomorphic phantom with both IROC standard insert and PRESAGE® insert were acquired separately. Both CT scans were imported into the Pinnacle (9.4 version) TPS for treatment planning, where the structures [planning target volume (PTV), organs at risk) and thermoluminescent detectors (TLDs) were manually contoured and used to optimise a VMAT plan. Treatment planning was done using VMAT (dual arc: 182°–178°, 178°–182°). Beam profile comparisons and gamma analysis were used to quantify agreement with film, PRESAGE® measurement and treatment planning system (TPS) calculated dose distribution.ResultsThe average ratio of TLD measured to calculated doses at the four PTV locations in the H&N phantom were between 0·95 to 0·99 for all three VMAT deliveries. Dose profiles were taken along the left–right, the anterior–posterior and superior–inferior axes, and good agreement was found between the PRESAGE® and Pinnacle profile. The mean value of gamma results for three VMAT deliveries in axial and sagittal planes were found to be 94·24 and 93·16% when compared with film and Pinnacle, respectively. The average values comparing the PRESAGE® results and dose values calculated on Pinnacle were observed to be 95·29 and 94·38% in the said planes, respectively, using a 5%/3 mm gamma criteria.ConclusionThe PRESAGE® dose measurements and calculated dose of pinnacle show reasonable agreement in both axial and sagittal planes for complex dual arc VMAT treatment plans. In general, the PRESAGE® dosimeter is found to be a feasible QA tool of VMAT plan for H&N cancer treatment.


2012 ◽  
Vol 39 (6Part2) ◽  
pp. 3598-3599
Author(s):  
J Ohrt ◽  
P Balter ◽  
L Court ◽  
M Gillin

2018 ◽  
Vol 18 (02) ◽  
pp. 138-149
Author(s):  
P. Niyas ◽  
K. K. Abdullah ◽  
M. P. Noufal ◽  
R. Vysakh

AbstractAimThe Electronic Portal Imaging Device (EPID), primarily used for patient setup during radiotherapy sessions is also used for dosimetric measurements. In the present study, the feasibility of EPID in both machine and patient-specific quality assurance (QA) are investigated. We have developed a comprehensive software tool for effective utilisation of EPID in our institutional QA protocol.Materials and methodsPortal Vision aS1000, amorphous silicon portal detector attached to Clinac iX—Linear Accelerator (LINAC) was used to measure daily profile and output constancy, various Multi-Leaf Collimator (MLC) checks and patient plan verification. Different QA plans were generated with the help of Eclipse Treatment Planning System (TPS) and MLC shaper software. The indigenously developed MATLAB programs were used for image analysis. Flatness, symmetry, output constancy, Field Width at Half Maximum (FWHM) and fluence comparison were studied from images obtained from TPS and EPID dosimetry.ResultsThe 3 years institutional data of profile constancy and patient-specific QA measured using EPID were found within the acceptable limits. The daily output of photon beam correlated with the output obtained through solid phantom measurements. The Pearson correlation coefficients are 0.941 (p = 0.0001), 0.888 (p = 0.0188) and 0.917 (p = 0.0007) for the years of 2014, 2015 and 2016, respectively. The accuracy of MLC for shaping complex treatment fields was studied in terms of FWHM at different portions of various fields, showed good agreement between TPS-generated and EPID-measured MLC positions. The comparison of selected patient plans in EPID with an independent 2D array detector system showed statistically significant correlation between these two systems. Percentage difference between TPS computed and EPID measured fluence maps calculated for number of patients using MATLAB code also exhibited the validity of those plans for treatment.


2019 ◽  
Vol 18 (4) ◽  
pp. 353-364
Author(s):  
Sepideh Behinaein ◽  
Ernest Osei ◽  
Johnson Darko ◽  
Paule Charland ◽  
Dylan Bassi

AbstractBackground:An increasing number of external beam treatment modalities including intensity modulated radiation therapy, volumetric modulated arc therapy (VMAT) and stereotactic radiosurgery uses very small fields for treatment planning and delivery. However, there are major challenges in small photon field dosimetry, due to the partial occlusion of the direct photon beam source’s view from the measurement point, lack of lateral charged particle equilibrium, steep dose-rate gradient and volume averaging effect of the detector response and variation of the energy fluence in the lateral direction of the beam. Therefore, experimental measurements of dosimetric parameters such as percent depth doses (PDDs), beam profiles and relative output factors (ROFs) for small fields continue to be a challenge.Materials and Methods:In this study, we used a homogeneous water phantom and the heterogeneous anthropomorphic stereotactic end-to-end verification (STEEV) head phantom for all dose measurements and calculations. PDDs, lateral dose profiles and ROFs were calculated in the Eclipse Treatment Planning System version 13·6 using the Acuros XB (AXB) and the analytical anisotropic algorithms (AAAs) in a homogenous water phantom. Monte Carlo (MC) simulations and measurements using the Exradin W1 Scintillator were also accomplished for four photon energies: 6 MV, 6FFF, 10 MV and 10FFF. Two VMAT treatment plans were generated for two different targets: one located in the brain and the other in the neck (close to the trachea) in the head phantom (CIRS, Norfolk, VA, USA). A Varian Truebeam linear accelerator (Varian, Palo Alto, CA, USA) was used for all treatment deliveries. Calculated results with AXB and AAA were compared with MC simulations and measurements.Results:The average difference of PDDs between W1 Exradin Scintillator measurements and MC simulations, AAA and AXB algorithm calculations were 1·2, 2·4 and 3·2%, respectively, for all field sizes and energies. AXB and AAA showed differences in ROF of about 0·3 and 2·9%, respectively, compared with W1 Exradin Scintillator measured values. For the target located in the brain in the head phantom, the average dose difference between W1 Exradin Scintillator and the MC simulations, AAA and AXB were 0·2, 3·2 and 2·7%, respectively, for all field sizes. Similarly, for the target located in the neck, the respective dose differences were 3·8, 5·7 and 3·5%.Conclusion:In this study, we compared dosimetric parameters such as PDD, beam profile and ROFs in water phantom and isocenter point dose measurements in an anthropomorphic head phantom representing a patient. We observed that measurements using the W1 Exradin scintillator agreed well with MC simulations and can be used efficiently for dosimetric parameters such as PDDs and dose profiles and patient-specific quality assurance measurements for small fields. In both homogenous and heterogeneous media, the AXB algorithm dose prediction agrees well with MC and measurements and was found to be superior to the AAA algorithm.


Sign in / Sign up

Export Citation Format

Share Document