scholarly journals Continental-scale citizen science data reveal no changes in acoustic responses of a widespread tree frog to an urbanisation gradient

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Brittany A Mitchell ◽  
Corey T Callaghan ◽  
Jodi J L Rowley

Abstract One of the major drivers of global biodiversity declines is habitat loss and modification, often associated with anthropogenic environments. To mitigate biodiversity declines, a comprehensive understanding of how species respond to novel anthropogenic environments is required. Compared to natural habitats, human-modified environments often have increased noise and light pollution, potentially affecting acoustically communicating species, such as frogs. These areas may force animals to modulate or alter their calls to communicate with potential mates, as they compete with anthropogenic noise. Using large-scale citizen science data, coupled with remotely sensed data, we examined how the advertisement calls of the Australian red tree frog (Litoria rubella) varied in response to a gradient consistent with anthropogenic disturbance. After measuring a suite of acoustic properties of L.rubella across its range, we discovered that their advertisement calls showed no response to a disturbance urbanisation gradient. The advertisement calls of the species were highly variable, both at continental and local scales. Our results indicate that acoustic communication in male L.rubella may not be impeded in human-modified habitats as (1) they are a loud species typically heard over background noise and multi-species choruses and (2) their calls are highly variable—potentially serving as a buffer to any acoustic disturbances. Overall, our results provide evidence that some frog species may be acoustically urban tolerant and provide a greater understanding of the responses frogs exhibit to human-mediated environmental change.

2021 ◽  
Vol 18 (184) ◽  
Author(s):  
Tam Tran ◽  
W. Tanner Porter ◽  
Daniel J. Salkeld ◽  
Melissa A. Prusinski ◽  
Shane T. Jensen ◽  
...  

Citizen science projects have the potential to address hypotheses requiring extremely large datasets that cannot be collected with the financial and labour constraints of most scientific projects. Data collection by the general public could expand the scope of scientific enquiry if these data accurately capture the system under study. However, data collection inconsistencies by the untrained public may result in biased datasets that do not accurately represent the natural world. In this paper, we harness the availability of scientific and public datasets of the Lyme disease tick vector to identify and account for biases in citizen science tick collections. Estimates of tick abundance from the citizen science dataset correspond moderately with estimates from direct surveillance but exhibit consistent biases. These biases can be mitigated by including factors that may impact collector participation or effort in statistical models, which, in turn, result in more accurate estimates of tick population sizes. Accounting for collection biases within large-scale, public participation datasets could update species abundance maps and facilitate using the wealth of citizen science data to answer scientific questions at scales that are not feasible with traditional datasets.


2020 ◽  
Author(s):  
D.E Bowler ◽  
D. Eichenberg ◽  
K.J. Conze ◽  
F. Suhling ◽  
K. Baumann ◽  
...  

AbstractRecent studies suggest insect declines in parts of Europe; however, the generality of these trends across different taxa and regions remains unclear. Standardized data are not available to assess large-scale, long-term changes for most insect groups but opportunistic citizen science data is widespread for some taxa. We compiled over 1 million occurrence records of Odonata (dragonflies and damselflies) from different regional databases across Germany. We used occupancy-detection models to estimate annual distributional changes between 1980 and 2016 for each species. We related species attributes to changes in the species’ distributions and inferred possible drivers of change. Species showing increases were generally warm-adapted species and/or running water species while species showing decreases were cold-adapted species using standing water habitats such as bogs. We developed a novel approach using time-series clustering to identify groups of species with similar patterns of temporal change. Using this method, we defined five typical patterns of change for Odonata – each associated with a specific combination of species attributes. Overall, trends in Odonata provide mixed news – improved water quality, coupled with positive impacts of climate change, could explain the positive trend status of many species. At the same time, declining species point to conservation challenges associated with habitat loss and degradation. Our study demonstrates the great value of citizen science data for assessing large-scale distributional change and conservation decision-making.


2019 ◽  
Vol 34 (6) ◽  
pp. 1231-1246 ◽  
Author(s):  
Corey T. Callaghan ◽  
Gilad Bino ◽  
Richard E. Major ◽  
John M. Martin ◽  
Mitchell B. Lyons ◽  
...  

2020 ◽  
Vol 29 (4) ◽  
pp. 1323-1337 ◽  
Author(s):  
Corey T. Callaghan ◽  
J. Dale Roberts ◽  
Alistair G. B. Poore ◽  
Ross A. Alford ◽  
Hal Cogger ◽  
...  

2021 ◽  
Vol 52 (2) ◽  
Author(s):  
Pedro G. Nicolau ◽  
Malcolm D. Burgess ◽  
Tiago A. Marques ◽  
Stephen R. Baillie ◽  
Nick J. Moran ◽  
...  

2019 ◽  
Author(s):  
Corey Thomas Callaghan ◽  
Richard E. Major ◽  
William K. Cornwell ◽  
Ailstair G. B. Poore ◽  
John Wilshire ◽  
...  

Understanding species-specific relationships with their environment is essential for ecology, biogeography, and conservation biology. Moreover, understanding how these relationships change with spatial scale is critical to mitigating potential threats to biodiversity. But methods which measure inter-specific variation in responses to environmental parameters, generalizable across multiple spatial scales, are lacking. We used broad-scale citizen science data, over a continental scale, integrated with remotely-sensed products, to produce a measure of response to urbanization for a given species at a continental-scale. We then compared these responses to modelled responses to urbanization at a local-scale, based on systematic sampling within a series of small cities. For 49 species which had sufficient data for modelling, we found a significant relationship (R2 = 0.51) between continental-scale urbanness and local-scale urbanness. Our results suggest that continental-scale responses are representative of small-scale responses to urbanization. We also found that relatively few citizen science observations (~250) are necessary for reliable estimates of continental-scale urban scores to predict local-scale response to urbanization. Our method of producing species-specific urban scores is robust and can be generalized to other taxa and other environmental variables with relative ease.


Ecology ◽  
2018 ◽  
Vol 100 (2) ◽  
pp. e02568 ◽  
Author(s):  
Shawn D. Taylor ◽  
Joan M. Meiners ◽  
Kristina Riemer ◽  
Michael C. Orr ◽  
Ethan P. White

2017 ◽  
Vol 27 (3) ◽  
pp. 323-336 ◽  
Author(s):  
ALAN T. K. LEE ◽  
RES ALTWEGG ◽  
PHOEBE BARNARD

SummaryThe robust assessment of conservation status increasingly requires population metrics for species that may be little-researched, with no prospect of immediate improvement, but for which citizen science atlas data may exist. We explore the potential for bird atlas data to generate population metrics of use in red data assessment, using the endemic and near-endemic birds of southern Africa. This region, defined here as South Africa, Lesotho and Swaziland, is home to a large number of endemic bird species and an active atlas project. The Southern African Bird Atlas Projects (SABAP) 1 and 2 are large-scale citizen science data sets, consisting of hundreds of thousands of bird checklists and > 10 million bird occurrence records on a grid across the subcontinent. These data contain detailed information on species’ distributions and population change. For conservationists, metrics that guide decisions on the conservation status of a species for red listing can be obtained from SABAP, including range size, range change, population change, and range connectivity (fragmentation). We present a range of conservation metrics for these bird species, focusing on population change metrics together with an associated statistical confidence metric. Population change metrics correlate with change metrics calculated from dynamic occupancy modelling for a set of 191 common species. We identify four species with neither international nor local threatened status, yet for which bird atlas data suggest alarming declines, and two species with threatened status for which our metrics suggest could be reconsidered. A standardised approach to deciding the conservation status of a species is useful so that charismatic or flagship species do not receive disproportionate attention, although ultimately conservation status of any species must always be a consultative process.


Sign in / Sign up

Export Citation Format

Share Document