scholarly journals Elevated CO2 has concurrent effects on leaf and grain metabolism but minimal effects on yield in wheat

2020 ◽  
Vol 71 (19) ◽  
pp. 5990-6003 ◽  
Author(s):  
Guillaume Tcherkez ◽  
Sinda Ben Mariem ◽  
Luis Larraya ◽  
Jose M García-Mina ◽  
Angel M Zamarreño ◽  
...  

Abstract While the general effect of CO2 enrichment on photosynthesis, stomatal conductance, N content, and yield has been documented, there is still some uncertainty as to whether there are interactive effects between CO2 enrichment and other factors, such as temperature, geographical location, water availability, and cultivar. In addition, the metabolic coordination between leaves and grains, which is crucial for crop responsiveness to elevated CO2, has never been examined closely. Here, we address these two aspects by multi-level analyses of data from several free-air CO2 enrichment experiments conducted in five different countries. There was little effect of elevated CO2 on yield (except in the USA), likely due to photosynthetic capacity acclimation, as reflected by protein profiles. In addition, there was a significant decrease in leaf amino acids (threonine) and macroelements (e.g. K) at elevated CO2, while other elements, such as Mg or S, increased. Despite the non-significant effect of CO2 enrichment on yield, grains appeared to be significantly depleted in N (as expected), but also in threonine, the S-containing amino acid methionine, and Mg. Overall, our results suggest a strong detrimental effect of CO2 enrichment on nutrient availability and remobilization from leaves to grains.

2022 ◽  
pp. 1-73
Author(s):  
Glenn J. Fitzgerald ◽  
Michael Tausz ◽  
Roger Armstrong ◽  
Joe Panozzo ◽  
Piotr Trębicki ◽  
...  

2004 ◽  
Vol 10 (12) ◽  
pp. 2121-2138 ◽  
Author(s):  
David S. Ellsworth ◽  
Peter B. Reich ◽  
Elke S. Naumburg ◽  
George W. Koch ◽  
Mark E. Kubiske ◽  
...  

2018 ◽  
Vol 123 (3) ◽  
pp. 461-468 ◽  
Author(s):  
Jinlong Dong ◽  
Stephen Grylls ◽  
James Hunt ◽  
Roger Armstrong ◽  
Emmanuel Delhaize ◽  
...  

Author(s):  
Ursula M Ruiz-Vera ◽  
Amanda P De Souza ◽  
Michael R Ament ◽  
Roslyn M Gleadow ◽  
Donald R Ort

Abstract Cassava has the potential to alleviate food insecurity in many tropical regions, yet few breeding efforts to increase yield have been made. Improved photosynthetic efficiency in cassava has the potential to increase yields, but cassava roots must have sufficient sink strength to prevent carbohydrates from accumulating in leaf tissue and suppressing photosynthesis. Here, we grew eight farmer-preferred African cassava cultivars under free-air CO2 enrichment (FACE) to evaluate the sink strength of cassava roots when photosynthesis increases due to elevated CO2 concentrations ([CO2]). Relative to the ambient treatments, elevated [CO2] treatments increased fresh (+27%) and dry (+37%) root biomass, which was driven by an increase in photosynthesis (+31%) and the absence of photosynthetic down-regulation over the growing season. Moreover, intrinsic water use efficiency improved under elevated [CO2] conditions, while leaf protein content and leaf and root cyanide concentrations were not affected. Overall, these results suggest that higher cassava yields can be expected as atmospheric [CO2] increases over the coming decades. However, there were cultivar differences in the partitioning of resources to roots versus above-grown biomass; thus, the particular responses of each cultivar must be considered when selecting candidates for improvement.


Trees ◽  
2015 ◽  
Vol 30 (2) ◽  
pp. 353-362 ◽  
Author(s):  
Evgenios Agathokleous ◽  
Makoto Watanabe ◽  
Tatsuro Nakaji ◽  
Xiaona Wang ◽  
Fuyuki Satoh ◽  
...  

Author(s):  
Jean-Pierre Gattuso ◽  
Jelle Bijma

Although the changes in the chemistry of seawater driven by the uptake of CO2 by the oceans have been known for decades, research addressing the effects of elevated CO2 on marine organisms and ecosystems has only started recently (see Chapter 1). The first results of deliberate experiments on organisms were published in the mid 1980s (Agegian 1985) and those on communities in 2000 (Langdon et al. 2000; Leclercq et al. 2000 ). In contrast, studies focusing on the response of terrestrial plant communities began much earlier, with the first results of free-air CO2 enrichment experiments (FACE) being published in the late 1960s (see Allen 1992 ). Not surprisingly, knowledge about the effects of elevated CO2 on the marine realm lags behind that concerning the terrestrial realm. Yet ocean acidification might have significant biological, ecological, biogeochemical, and societal implications and decision-makers need to know the extent and severity of these implications in order to decide whether they should be considered, or not, when designing future policies. The goals of this chapter are to summarize key information provided in the preceding chapters by highlighting what is known and what is unknown, identify and discuss the ecosystems that are most at risk, as well as discuss prospects and recommendation for future research. The chemical, biological, ecological, biogeochemical, and societal implications of ocean acidification have been comprehensively reviewed in the previous chapters with one minor exception. Early work has shown that ocean acidification significantly affects the propagation of sound in seawater and suggested possible consequences for marine organisms sensitive to sound (Hester et al . 2008). However, sub sequent studies have shown that the changes in the upper-ocean sound absorption coefficient at future pH levels will have no or a small impact on ocean acoustic noise (Joseph and Chiu 2010; Udovydchenkov et al . 2010). The goal of this section is to condense the current knowledge about the consequences of ocean acidification in 15 key statements. Each statement is given levels of evidence and, when possible, a level of confidence as recommended by the Intergovernmental Panel on Climate Change (IPCC) for use in its 5th Assessment Report (Mastrandrea et al. 2010).


Sign in / Sign up

Export Citation Format

Share Document