Ocean Acidification: Knowns, Unknowns, and Perspectives

Author(s):  
Jean-Pierre Gattuso ◽  
Jelle Bijma

Although the changes in the chemistry of seawater driven by the uptake of CO2 by the oceans have been known for decades, research addressing the effects of elevated CO2 on marine organisms and ecosystems has only started recently (see Chapter 1). The first results of deliberate experiments on organisms were published in the mid 1980s (Agegian 1985) and those on communities in 2000 (Langdon et al. 2000; Leclercq et al. 2000 ). In contrast, studies focusing on the response of terrestrial plant communities began much earlier, with the first results of free-air CO2 enrichment experiments (FACE) being published in the late 1960s (see Allen 1992 ). Not surprisingly, knowledge about the effects of elevated CO2 on the marine realm lags behind that concerning the terrestrial realm. Yet ocean acidification might have significant biological, ecological, biogeochemical, and societal implications and decision-makers need to know the extent and severity of these implications in order to decide whether they should be considered, or not, when designing future policies. The goals of this chapter are to summarize key information provided in the preceding chapters by highlighting what is known and what is unknown, identify and discuss the ecosystems that are most at risk, as well as discuss prospects and recommendation for future research. The chemical, biological, ecological, biogeochemical, and societal implications of ocean acidification have been comprehensively reviewed in the previous chapters with one minor exception. Early work has shown that ocean acidification significantly affects the propagation of sound in seawater and suggested possible consequences for marine organisms sensitive to sound (Hester et al . 2008). However, sub sequent studies have shown that the changes in the upper-ocean sound absorption coefficient at future pH levels will have no or a small impact on ocean acoustic noise (Joseph and Chiu 2010; Udovydchenkov et al . 2010). The goal of this section is to condense the current knowledge about the consequences of ocean acidification in 15 key statements. Each statement is given levels of evidence and, when possible, a level of confidence as recommended by the Intergovernmental Panel on Climate Change (IPCC) for use in its 5th Assessment Report (Mastrandrea et al. 2010).

2015 ◽  
Vol 61 (4) ◽  
pp. 653-668 ◽  
Author(s):  
Anna V. Ivanina ◽  
Inna M. Sokolova

Abstract Changes in the global environment such as ocean acidification (OA) may interact with anthropogenic pollutants including trace metals threatening the integrity of marine ecosystems. We analyze recent studies on the interactive effects of OA and trace metals on marine organisms with a focus on the physiological basis of these interactions. Our analysis shows that the responses to elevated CO2 and metals are strongly dependent on the species, developmental stage, metal biochemistry and the degree of environmental hypercapnia, and cannot be directly predicted from the CO2-induced changes in metal solubility and speciation. The key physiological functions affected by both the OA and trace metal exposures involve acid-base regulation, protein turnover and mitochondrial bioenergetics, reflecting the sensitivity of the underlying molecular and cellular pathways to CO2and metals. Physiological interactions between elevated CO2 and metals may impact the organisms’ capacity to maintain acid-base homeostasis and reduce the amount of energy available for fitness-related functions such as growth, development and reproduction thereby affecting survival and performance of estuarine populations. Environmental hypercapnia may also affect the marine food webs by altering predator-prey interactions and the trophic transfer of metals in the food chain. However, our understanding of the degree to which these effects can impact the function and integrity of marine ecosystems is limited due the scarcity of the published research and its bias towards certain taxonomic groups. Future research priorities should include studies of metal x PCO2 interactions focusing on critical physiological functions (including acid-base, protein and energy homeostasis) in a greater range of ecologically and economically important marine species, as well as including the field populations naturally exposed (and potentially adapted) to different levels of metals and CO2 in their environments.


2011 ◽  
Vol 8 (4) ◽  
pp. 8485-8513 ◽  
Author(s):  
M. Holcomb ◽  
A. L. Cohen ◽  
D. C. McCorkle

Abstract. The effects of nutrients and pCO2 on zooxanthellate and azooxanthellate colonies of the temperate scleractinian coral Astrangia poculata (Ellis and Solander, 1786) were investigated at two different temperatures (16 °C and 24 °C). Corals exposed to elevated pCO2 tended to have lower relative calcification rates, as estimated from changes in buoyant weights. No nutrient effect was observed. At 16 °C, gamete release was not observed, and no gender differences in calcification rate were observed. However, corals grown at 24 °C spawned repeatedly and male and female corals exhibited two different growth rate patterns. Female corals grown at 24 °C and exposed to CO2 had calcification rates 39 % lower than females grown at ambient CO2, while males showed only a 5 % decline in calcification under elevated CO2. At 16 °C, female and male corals showed similar reductions in calcification rates in response to elevated CO2 (15 % and 19 % respectively). At 24 °C, corals spawned repeatedly, while no spawning was observed at 16 °C. The increased sensitivity of females to elevated pCO2 may reflect a greater investment of energy in reproduction (egg production) relative to males (sperm production). These results suggest that both gender and spawning are important factors in determining the sensitivity of corals to ocean acidification and their inclusion in future research may be critical to predicting how the population structures of marine calcifiers will change in response to ocean acidification.


2012 ◽  
Vol 9 (1) ◽  
pp. 29-39 ◽  
Author(s):  
M. Holcomb ◽  
A. L. Cohen ◽  
D. C. McCorkle

Abstract. The effects of nutrients and pCO2 on zooxanthellate and azooxanthellate colonies of the temperate scleractinian coral Astrangia poculata (Ellis and Solander, 1786) were investigated at two different temperatures (16 °C and 24 °C). Corals exposed to elevated pCO2 tended to have lower relative calcification rates, as estimated from changes in buoyant weights. Experimental nutrient enrichments had no significant effect nor did there appear to be any interaction between pCO2 and nutrients. Elevated pCO2 appeared to have a similar effect on coral calcification whether zooxanthellae were present or absent at 16 °C. However, at 24 °C, the interpretation of the results is complicated by a significant interaction between gender and pCO2 for spawning corals. At 16 °C, gamete release was not observed, and no gender differences in calcification rates were observed – female and male corals showed similar reductions in calcification rates in response to elevated CO2 (15% and 19% respectively). Corals grown at 24 °C spawned repeatedly and male and female corals exhibited two different growth rate patterns – female corals grown at 24 °C and exposed to CO2 had calcification rates 39% lower than females grown at ambient CO2, while males showed a non-significant decline of 5% under elevated CO2. The increased sensitivity of females to elevated pCO2 may reflect a greater investment of energy in reproduction (egg production) relative to males (sperm production). These results suggest that both gender and spawning are important factors in determining the sensitivity of corals to ocean acidification, and considering these factors in future research may be critical to predicting how the population structures of marine calcifiers will change in response to ocean acidification.


2020 ◽  
Vol 71 (19) ◽  
pp. 5990-6003 ◽  
Author(s):  
Guillaume Tcherkez ◽  
Sinda Ben Mariem ◽  
Luis Larraya ◽  
Jose M García-Mina ◽  
Angel M Zamarreño ◽  
...  

Abstract While the general effect of CO2 enrichment on photosynthesis, stomatal conductance, N content, and yield has been documented, there is still some uncertainty as to whether there are interactive effects between CO2 enrichment and other factors, such as temperature, geographical location, water availability, and cultivar. In addition, the metabolic coordination between leaves and grains, which is crucial for crop responsiveness to elevated CO2, has never been examined closely. Here, we address these two aspects by multi-level analyses of data from several free-air CO2 enrichment experiments conducted in five different countries. There was little effect of elevated CO2 on yield (except in the USA), likely due to photosynthetic capacity acclimation, as reflected by protein profiles. In addition, there was a significant decrease in leaf amino acids (threonine) and macroelements (e.g. K) at elevated CO2, while other elements, such as Mg or S, increased. Despite the non-significant effect of CO2 enrichment on yield, grains appeared to be significantly depleted in N (as expected), but also in threonine, the S-containing amino acid methionine, and Mg. Overall, our results suggest a strong detrimental effect of CO2 enrichment on nutrient availability and remobilization from leaves to grains.


The ocean helps moderate climate change thanks to its considerable capacity to store CO2, through the combined actions of ocean physics, chemistry, and biology. This storage capacity limits the amount of human-released CO2 remaining in the atmosphere. As CO2 reacts with seawater, it generates dramatic changes in carbonate chemistry, including decreases in pH and carbonate ions and an increase in bicarbonate ions. The consequences of this overall process, known as "ocean acidification", are raising concerns for the biological, ecological, and biogeochemical health of the world's oceans, as well as for the potential societal implications. This research level text is the first to synthesize the very latest understanding of the consequences of ocean acidification, with the intention of informing both future research agendas and marine management policy. A prestigious list of authors has been assembled, among them the coordinators of major national and international projects on ocean acidification.


2013 ◽  
Vol 40 (6) ◽  
pp. 531 ◽  
Author(s):  
Lucas A. Cernusak ◽  
Klaus Winter ◽  
James W. Dalling ◽  
Joseph A. M. Holtum ◽  
Carlos Jaramillo ◽  
...  

Elevated atmospheric CO2 concentrations (ca) will undoubtedly affect the metabolism of tropical forests worldwide; however, critical aspects of how tropical forests will respond remain largely unknown. Here, we review the current state of knowledge about physiological and ecological responses, with the aim of providing a framework that can help to guide future experimental research. Modelling studies have indicated that elevated ca can potentially stimulate photosynthesis more in the tropics than at higher latitudes, because suppression of photorespiration by elevated ca increases with temperature. However, canopy leaves in tropical forests could also potentially reach a high temperature threshold under elevated ca that will moderate the rise in photosynthesis. Belowground responses, including fine root production, nutrient foraging and soil organic matter processing, will be especially important to the integrated ecosystem response to elevated ca. Water use efficiency will increase as ca rises, potentially impacting upon soil moisture status and nutrient availability. Recruitment may be differentially altered for some functional groups, potentially decreasing ecosystem carbon storage. Whole-forest CO2 enrichment experiments are urgently needed to test predictions of tropical forest functioning under elevated ca. Smaller scale experiments in the understorey and in gaps would also be informative, and could provide stepping stones towards stand-scale manipulations.


Sign in / Sign up

Export Citation Format

Share Document