scholarly journals Coordinated decline of leaf hydraulic and stomatal conductances under drought is not linked to leaf xylem embolism for different grapevine cultivars

2020 ◽  
Vol 71 (22) ◽  
pp. 7286-7300
Author(s):  
Caetano Albuquerque ◽  
Christine Scoffoni ◽  
Craig R Brodersen ◽  
Thomas N Buckley ◽  
Lawren Sack ◽  
...  

Abstract Drought decreases water transport capacity of leaves and limits gas exchange, which involves reduced leaf leaf hydraulic conductance (Kleaf) in both the xylem and outside-xylem pathways. Some literature suggests that grapevines are hyper-susceptible to drought-induced xylem embolism. We combined Kleaf and gas exchange measurements, micro-computed tomography of intact leaves, and spatially explicit modeling of the outside-xylem pathways to evaluate the role of vein embolism and Kleaf in the responses of two different grapevine cultivars to drought. Cabernet Sauvignon and Chardonnay exhibited similar vulnerabilities of Kleaf and gs to dehydration, decreasing substantially prior to leaf xylem embolism. Kleaf and gs decreased by 80% for both cultivars by Ψ leaf approximately –0.7 MPa and –1.2 MPa, respectively, while leaf xylem embolism initiated around Ψ leaf = –1.25 MPa in the midribs and little to no embolism was detected in minor veins even under severe dehydration for both cultivars. Modeling results indicated that reduced membrane permeability associated with a Casparian-like band in the leaf vein bundle sheath would explain declines in Kleaf of both cultivars. We conclude that during moderate water stress, changes in the outside-xylem pathways, rather than xylem embolism, are responsible for reduced Kleaf and gs. Understanding this mechanism could help to ensure adequate carbon capture and crop performance under drought.

Ecosystems ◽  
2016 ◽  
Vol 20 (2) ◽  
pp. 284-300 ◽  
Author(s):  
Donald L. DeAngelis ◽  
Simeon Yurek

1975 ◽  
Vol 39 (1) ◽  
pp. 47-53 ◽  
Author(s):  
J. A. Loeppky ◽  
U. C. Luft

To clarify the role of O2 stores in the fluctuations in VO2 observed with changing posture, O2 intake (Veo2) and pulmonary capillary O2 transfer (Vpco2) were calculated breath by breath with a box-balloon sprometer and mass spectrometer. Changes in O2 stores of the lungs (O2L) and blood (O2b) were computed assuming metabolic rate (Vco2) constant (O2L = Veo2 - Vpco2; O2b = Vpco2 - Vco2). Measurements were made before, during, and after passive tilt to 60 degrees and on return to recumbency after 10 min erect. From supine to upright O2L increased rapidly and O2b dropped slowly, creating a net deficit in Veo2 of 130 ml in 10 min. Return to supine caused rapid loss in O2L and gain in O2b with a net Veo2 excess of 117 ml. Shifts in O2b were 2.5 times greater but opposite to shifts in O2L. Changes in O2b result from shifts in blood volume and flow more than from changes in cardiac output. Refilling of O2b, matching loss while upright, caused transient hypoxia with significant hyperpnea.


2018 ◽  
Vol 78 ◽  
pp. 148-159 ◽  
Author(s):  
Adriano Vinca ◽  
Marianna Rottoli ◽  
Giacomo Marangoni ◽  
Massimo Tavoni

Sign in / Sign up

Export Citation Format

Share Document